from pathlib import Path from typing import Any import cv2 from insightface.app import FaceAnalysis from ..config import settings from ..schemas import ModelType from .base import InferenceModel class FaceRecognizer(InferenceModel): _model_type = ModelType.FACIAL_RECOGNITION def __init__( self, model_name: str, min_score: float = settings.min_face_score, cache_dir: Path | str | None = None, **model_kwargs: Any, ) -> None: self.min_score = min_score super().__init__(model_name, cache_dir, **model_kwargs) def load(self, **model_kwargs: Any) -> None: self.model = FaceAnalysis( name=self.model_name, root=self.cache_dir.as_posix(), allowed_modules=["detection", "recognition"], **model_kwargs, ) self.model.prepare( ctx_id=0, det_thresh=self.min_score, det_size=(640, 640), ) def predict(self, image: cv2.Mat) -> list[dict[str, Any]]: height, width, _ = image.shape results = [] faces = self.model.get(image) for face in faces: x1, y1, x2, y2 = face.bbox results.append( { "imageWidth": width, "imageHeight": height, "boundingBox": { "x1": round(x1), "y1": round(y1), "x2": round(x2), "y2": round(y2), }, "score": face.det_score.item(), "embedding": face.normed_embedding.tolist(), } ) return results