from enum import StrEnum from typing import TypeAlias import numpy as np from pydantic import BaseModel def to_lower_camel(string: str) -> str: tokens = [token.capitalize() if i > 0 else token for i, token in enumerate(string.split("_"))] return "".join(tokens) class TextModelRequest(BaseModel): text: str class TextResponse(BaseModel): __root__: str class MessageResponse(BaseModel): message: str class BoundingBox(BaseModel): x1: int y1: int x2: int y2: int class ModelType(StrEnum): IMAGE_CLASSIFICATION = "image-classification" CLIP = "clip" FACIAL_RECOGNITION = "facial-recognition" ndarray_f32: TypeAlias = np.ndarray[int, np.dtype[np.float32]] ndarray_i64: TypeAlias = np.ndarray[int, np.dtype[np.int64]] ndarray_i32: TypeAlias = np.ndarray[int, np.dtype[np.int32]]