import zipfile from pathlib import Path from typing import Any import cv2 import numpy as np import onnxruntime as ort from insightface.model_zoo import ArcFaceONNX, RetinaFace from insightface.utils.face_align import norm_crop from insightface.utils.storage import BASE_REPO_URL, download_file from app.schemas import ModelType, ndarray_f32 from .base import InferenceModel class FaceRecognizer(InferenceModel): _model_type = ModelType.FACIAL_RECOGNITION def __init__( self, model_name: str, min_score: float = 0.7, cache_dir: Path | str | None = None, **model_kwargs: Any, ) -> None: self.min_score = model_kwargs.pop("minScore", min_score) super().__init__(model_name, cache_dir, **model_kwargs) def _download(self) -> None: zip_file = self.cache_dir / f"{self.model_name}.zip" download_file(f"{BASE_REPO_URL}/{self.model_name}.zip", zip_file) with zipfile.ZipFile(zip_file, "r") as zip: members = zip.namelist() det_file = next(model for model in members if model.startswith("det_")) rec_file = next(model for model in members if model.startswith("w600k_")) zip.extractall(self.cache_dir, members=[det_file, rec_file]) zip_file.unlink() def _load(self) -> None: try: det_file = next(self.cache_dir.glob("det_*.onnx")) rec_file = next(self.cache_dir.glob("w600k_*.onnx")) except StopIteration: raise FileNotFoundError("Facial recognition models not found in cache directory") self.det_model = RetinaFace( session=ort.InferenceSession( det_file.as_posix(), sess_options=self.sess_options, providers=self.providers, provider_options=self.provider_options, ), ) self.rec_model = ArcFaceONNX( rec_file.as_posix(), session=ort.InferenceSession( rec_file.as_posix(), sess_options=self.sess_options, providers=self.providers, provider_options=self.provider_options, ), ) self.det_model.prepare( ctx_id=0, det_thresh=self.min_score, input_size=(640, 640), ) self.rec_model.prepare(ctx_id=0) def _predict(self, image: ndarray_f32 | bytes) -> list[dict[str, Any]]: if isinstance(image, bytes): image = cv2.imdecode(np.frombuffer(image, np.uint8), cv2.IMREAD_COLOR) bboxes, kpss = self.det_model.detect(image) if bboxes.size == 0: return [] assert isinstance(image, np.ndarray) and isinstance(kpss, np.ndarray) scores = bboxes[:, 4].tolist() bboxes = bboxes[:, :4].round().tolist() results = [] height, width, _ = image.shape for (x1, y1, x2, y2), score, kps in zip(bboxes, scores, kpss): cropped_img = norm_crop(image, kps) embedding = self.rec_model.get_feat(cropped_img)[0].tolist() results.append( { "imageWidth": width, "imageHeight": height, "boundingBox": { "x1": x1, "y1": y1, "x2": x2, "y2": y2, }, "score": score, "embedding": embedding, } ) return results @property def cached(self) -> bool: return self.cache_dir.is_dir() and any(self.cache_dir.glob("*.onnx")) def configure(self, **model_kwargs: Any) -> None: self.det_model.det_thresh = model_kwargs.pop("minScore", self.det_model.det_thresh)