from pathlib import Path from typing import Any import numpy as np from insightface.model_zoo import RetinaFace from numpy.typing import NDArray from app.models.base import InferenceModel from app.models.transforms import decode_cv2 from app.schemas import FaceDetectionOutput, ModelSession, ModelTask, ModelType class FaceDetector(InferenceModel): depends = [] identity = (ModelType.DETECTION, ModelTask.FACIAL_RECOGNITION) def __init__( self, model_name: str, min_score: float = 0.7, cache_dir: Path | str | None = None, **model_kwargs: Any, ) -> None: self.min_score = model_kwargs.pop("minScore", min_score) super().__init__(model_name, cache_dir, **model_kwargs) def _load(self) -> ModelSession: session = self._make_session(self.model_path) self.model = RetinaFace(session=session) self.model.prepare(ctx_id=0, det_thresh=self.min_score, input_size=(640, 640)) return session def _predict(self, inputs: NDArray[np.uint8] | bytes, **kwargs: Any) -> FaceDetectionOutput: inputs = decode_cv2(inputs) bboxes, landmarks = self._detect(inputs) return { "boxes": bboxes[:, :4].round(), "scores": bboxes[:, 4], "landmarks": landmarks, } def _detect(self, inputs: NDArray[np.uint8] | bytes) -> tuple[NDArray[np.float32], NDArray[np.float32]]: return self.model.detect(inputs) # type: ignore def configure(self, **kwargs: Any) -> None: self.model.det_thresh = kwargs.pop("minScore", self.model.det_thresh)