from __future__ import annotations from abc import ABC, abstractmethod from pathlib import Path from shutil import rmtree from typing import Any, ClassVar from huggingface_hub import snapshot_download import ann.ann from app.sessions.ort import OrtSession from ..config import clean_name, log, settings from ..schemas import ModelFormat, ModelIdentity, ModelSession, ModelTask, ModelType from ..sessions.ann import AnnSession class InferenceModel(ABC): depends: ClassVar[list[ModelIdentity]] identity: ClassVar[ModelIdentity] def __init__( self, model_name: str, cache_dir: Path | str | None = None, preferred_format: ModelFormat | None = None, session: ModelSession | None = None, **model_kwargs: Any, ) -> None: self.loaded = session is not None self.load_attempts = 0 self.model_name = clean_name(model_name) self.cache_dir = Path(cache_dir) if cache_dir is not None else self._cache_dir_default self.model_format = preferred_format if preferred_format is not None else self._model_format_default if session is not None: self.session = session def download(self) -> None: if not self.cached: log.info( f"Downloading {self.model_type.replace('-', ' ')} model '{self.model_name}'. This may take a while." ) self._download() def load(self) -> None: if self.loaded: return self.load_attempts += 1 self.download() attempt = f"Attempt #{self.load_attempts + 1} to load" if self.load_attempts else "Loading" log.info(f"{attempt} {self.model_type.replace('-', ' ')} model '{self.model_name}' to memory") self.session = self._load() self.loaded = True def predict(self, *inputs: Any, **model_kwargs: Any) -> Any: self.load() if model_kwargs: self.configure(**model_kwargs) return self._predict(*inputs, **model_kwargs) @abstractmethod def _predict(self, *inputs: Any, **model_kwargs: Any) -> Any: ... def configure(self, **kwargs: Any) -> None: pass def _download(self) -> None: ignore_patterns = [] if self.model_format == ModelFormat.ARMNN else ["*.armnn"] snapshot_download( f"immich-app/{clean_name(self.model_name)}", cache_dir=self.cache_dir, local_dir=self.cache_dir, local_dir_use_symlinks=False, ignore_patterns=ignore_patterns, ) def _load(self) -> ModelSession: return self._make_session(self.model_path) def clear_cache(self) -> None: if not self.cache_dir.exists(): log.warning( f"Attempted to clear cache for model '{self.model_name}', but cache directory does not exist", ) return if not rmtree.avoids_symlink_attacks: raise RuntimeError("Attempted to clear cache, but rmtree is not safe on this platform") if self.cache_dir.is_dir(): log.info(f"Cleared cache directory for model '{self.model_name}'.") rmtree(self.cache_dir) else: log.warning( ( f"Encountered file instead of directory at cache path " f"for '{self.model_name}'. Removing file and replacing with a directory." ), ) self.cache_dir.unlink() self.cache_dir.mkdir(parents=True, exist_ok=True) def _make_session(self, model_path: Path) -> ModelSession: match model_path.suffix: case ".armnn": session: ModelSession = AnnSession(model_path) case ".onnx": session = OrtSession(model_path) case _: raise ValueError(f"Unsupported model file type: {model_path.suffix}") return session @property def model_dir(self) -> Path: return self.cache_dir / self.model_type.value @property def model_path(self) -> Path: return self.model_dir / f"model.{self.model_format}" @property def model_task(self) -> ModelTask: return self.identity[1] @property def model_type(self) -> ModelType: return self.identity[0] @property def cache_dir(self) -> Path: return self._cache_dir @cache_dir.setter def cache_dir(self, cache_dir: Path) -> None: self._cache_dir = cache_dir @property def _cache_dir_default(self) -> Path: return settings.cache_folder / self.model_task.value / self.model_name @property def cached(self) -> bool: return self.model_path.is_file() @property def model_format(self) -> ModelFormat: return self._preferred_format @model_format.setter def model_format(self, preferred_format: ModelFormat) -> None: log.debug(f"Setting preferred format to {preferred_format}") self._preferred_format = preferred_format @property def _model_format_default(self) -> ModelFormat: prefer_ann = ann.ann.is_available and settings.ann ann_exists = (self.model_dir / "model.armnn").is_file() if prefer_ann and not ann_exists: log.warning(f"ARM NN is available, but '{self.model_name}' does not support ARM NN. Falling back to ONNX.") return ModelFormat.ARMNN if prefer_ann and ann_exists else ModelFormat.ONNX