import tempfile import warnings from pathlib import Path import torch from multilingual_clip.pt_multilingual_clip import MultilingualCLIP from transformers import AutoTokenizer from .openclip import OpenCLIPModelConfig from .openclip import to_onnx as openclip_to_onnx from .optimize import optimize from .util import get_model_path _MCLIP_TO_OPENCLIP = { "M-CLIP/XLM-Roberta-Large-Vit-B-32": OpenCLIPModelConfig("ViT-B-32", "openai"), "M-CLIP/XLM-Roberta-Large-Vit-B-16Plus": OpenCLIPModelConfig("ViT-B-16-plus-240", "laion400m_e32"), "M-CLIP/LABSE-Vit-L-14": OpenCLIPModelConfig("ViT-L-14", "openai"), "M-CLIP/XLM-Roberta-Large-Vit-L-14": OpenCLIPModelConfig("ViT-L-14", "openai"), } def to_onnx( model_name: str, output_dir_visual: Path | str, output_dir_textual: Path | str, ) -> None: textual_path = get_model_path(output_dir_textual) with tempfile.TemporaryDirectory() as tmpdir: model = MultilingualCLIP.from_pretrained(model_name, cache_dir=tmpdir) AutoTokenizer.from_pretrained(model_name).save_pretrained(output_dir_textual) for param in model.parameters(): param.requires_grad_(False) export_text_encoder(model, textual_path) openclip_to_onnx(_MCLIP_TO_OPENCLIP[model_name], output_dir_visual) optimize(textual_path) def export_text_encoder(model: MultilingualCLIP, output_path: Path | str) -> None: output_path = Path(output_path) def forward(self: MultilingualCLIP, input_ids: torch.Tensor, attention_mask: torch.Tensor) -> torch.Tensor: embs = self.transformer(input_ids, attention_mask)[0] embs = (embs * attention_mask.unsqueeze(2)).sum(dim=1) / attention_mask.sum(dim=1)[:, None] embs = self.LinearTransformation(embs) return torch.nn.functional.normalize(embs, dim=-1) # unfortunately need to monkeypatch for tracing to work here # otherwise it hits the 2GiB protobuf serialization limit MultilingualCLIP.forward = forward args = (torch.ones(1, 77, dtype=torch.int32), torch.ones(1, 77, dtype=torch.int32)) with warnings.catch_warnings(): warnings.simplefilter("ignore", UserWarning) torch.onnx.export( model, args, output_path.as_posix(), input_names=["input_ids", "attention_mask"], output_names=["text_embedding"], opset_version=17, dynamic_axes={ "input_ids": {0: "batch_size", 1: "sequence_length"}, "attention_mask": {0: "batch_size", 1: "sequence_length"}, }, )