from __future__ import annotations import pickle from abc import ABC, abstractmethod from pathlib import Path from shutil import rmtree from typing import Any import onnxruntime as ort from huggingface_hub import snapshot_download from ..config import get_cache_dir, get_hf_model_name, log, settings from ..schemas import ModelType class InferenceModel(ABC): _model_type: ModelType def __init__( self, model_name: str, cache_dir: Path | str | None = None, inter_op_num_threads: int = settings.model_inter_op_threads, intra_op_num_threads: int = settings.model_intra_op_threads, **model_kwargs: Any, ) -> None: self.model_name = model_name self.loaded = False self._cache_dir = Path(cache_dir) if cache_dir is not None else None self.providers = model_kwargs.pop("providers", ["CPUExecutionProvider"]) # don't pre-allocate more memory than needed self.provider_options = model_kwargs.pop( "provider_options", [{"arena_extend_strategy": "kSameAsRequested"}] * len(self.providers) ) log.debug( ( f"Setting '{self.model_name}' execution providers to {self.providers}" "in descending order of preference" ), ) log.debug(f"Setting execution provider options to {self.provider_options}") self.sess_options = PicklableSessionOptions() # avoid thread contention between models if inter_op_num_threads > 1: self.sess_options.execution_mode = ort.ExecutionMode.ORT_PARALLEL log.debug(f"Setting execution_mode to {self.sess_options.execution_mode.name}") log.debug(f"Setting inter_op_num_threads to {inter_op_num_threads}") log.debug(f"Setting intra_op_num_threads to {intra_op_num_threads}") self.sess_options.inter_op_num_threads = inter_op_num_threads self.sess_options.intra_op_num_threads = intra_op_num_threads self.sess_options.enable_cpu_mem_arena = False def download(self) -> None: if not self.cached: log.info( (f"Downloading {self.model_type.replace('-', ' ')} model '{self.model_name}'." "This may take a while.") ) self._download() def load(self) -> None: if self.loaded: return self.download() log.info(f"Loading {self.model_type.replace('-', ' ')} model '{self.model_name}'") self._load() self.loaded = True def predict(self, inputs: Any, **model_kwargs: Any) -> Any: self.load() if model_kwargs: self.configure(**model_kwargs) return self._predict(inputs) @abstractmethod def _predict(self, inputs: Any) -> Any: ... def configure(self, **model_kwargs: Any) -> None: pass def _download(self) -> None: snapshot_download( get_hf_model_name(self.model_name), cache_dir=self.cache_dir, local_dir=self.cache_dir, local_dir_use_symlinks=False, ) @abstractmethod def _load(self) -> None: ... @property def model_type(self) -> ModelType: return self._model_type @property def cache_dir(self) -> Path: return self._cache_dir if self._cache_dir is not None else get_cache_dir(self.model_name, self.model_type) @cache_dir.setter def cache_dir(self, cache_dir: Path) -> None: self._cache_dir = cache_dir @property def cached(self) -> bool: return self.cache_dir.exists() and any(self.cache_dir.iterdir()) @classmethod def from_model_type(cls, model_type: ModelType, model_name: str, **model_kwargs: Any) -> InferenceModel: subclasses = {subclass._model_type: subclass for subclass in cls.__subclasses__()} if model_type not in subclasses: raise ValueError(f"Unsupported model type: {model_type}") return subclasses[model_type](model_name, **model_kwargs) def clear_cache(self) -> None: if not self.cache_dir.exists(): log.warn( f"Attempted to clear cache for model '{self.model_name}' but cache directory does not exist.", ) return if not rmtree.avoids_symlink_attacks: raise RuntimeError("Attempted to clear cache, but rmtree is not safe on this platform.") if self.cache_dir.is_dir(): log.info(f"Cleared cache directory for model '{self.model_name}'.") rmtree(self.cache_dir) else: log.warn( ( f"Encountered file instead of directory at cache path " f"for '{self.model_name}'. Removing file and replacing with a directory." ), ) self.cache_dir.unlink() self.cache_dir.mkdir(parents=True, exist_ok=True) # HF deep copies configs, so we need to make session options picklable class PicklableSessionOptions(ort.SessionOptions): def __getstate__(self) -> bytes: return pickle.dumps([(attr, getattr(self, attr)) for attr in dir(self) if not callable(getattr(self, attr))]) def __setstate__(self, state: Any) -> None: self.__init__() # type: ignore for attr, val in pickle.loads(state): setattr(self, attr, val)