from io import BytesIO from pathlib import Path from unittest import mock import cv2 import pytest from fastapi.testclient import TestClient from PIL import Image from .config import settings from .models.cache import ModelCache from .models.clip import CLIPSTEncoder from .models.facial_recognition import FaceRecognizer from .models.image_classification import ImageClassifier from .schemas import ModelType class TestImageClassifier: def test_init(self, mock_classifier_pipeline: mock.Mock) -> None: cache_dir = Path("test_cache") classifier = ImageClassifier("test_model_name", 0.5, cache_dir=cache_dir) assert classifier.min_score == 0.5 mock_classifier_pipeline.assert_called_once_with( "image-classification", "test_model_name", model_kwargs={"cache_dir": cache_dir}, ) def test_min_score(self, pil_image: Image.Image, mock_classifier_pipeline: mock.Mock) -> None: classifier = ImageClassifier("test_model_name", min_score=0.0) classifier.min_score = 0.0 all_labels = classifier.predict(pil_image) classifier.min_score = 0.5 filtered_labels = classifier.predict(pil_image) assert all_labels == [ "that's an image alright", "well it ends with .jpg", "idk", "im just seeing bytes", "not sure", "probably a virus", ] assert filtered_labels == ["that's an image alright"] class TestCLIP: def test_init(self, mock_st: mock.Mock) -> None: CLIPSTEncoder("test_model_name", cache_dir="test_cache") mock_st.assert_called_once_with("test_model_name", cache_folder="test_cache") def test_basic_image(self, pil_image: Image.Image, mock_st: mock.Mock) -> None: clip_encoder = CLIPSTEncoder("test_model_name", cache_dir="test_cache") embedding = clip_encoder.predict(pil_image) assert isinstance(embedding, list) assert len(embedding) == 512 assert all([isinstance(num, float) for num in embedding]) mock_st.assert_called_once() def test_basic_text(self, mock_st: mock.Mock) -> None: clip_encoder = CLIPSTEncoder("test_model_name", cache_dir="test_cache") embedding = clip_encoder.predict("test search query") assert isinstance(embedding, list) assert len(embedding) == 512 assert all([isinstance(num, float) for num in embedding]) mock_st.assert_called_once() class TestFaceRecognition: def test_init(self, mock_faceanalysis: mock.Mock) -> None: FaceRecognizer("test_model_name", cache_dir="test_cache") mock_faceanalysis.assert_called_once_with( name="test_model_name", root="test_cache", allowed_modules=["detection", "recognition"], ) def test_basic(self, cv_image: cv2.Mat, mock_faceanalysis: mock.Mock) -> None: face_recognizer = FaceRecognizer("test_model_name", min_score=0.0, cache_dir="test_cache") faces = face_recognizer.predict(cv_image) assert len(faces) == 2 for face in faces: assert face["imageHeight"] == 800 assert face["imageWidth"] == 600 assert isinstance(face["embedding"], list) assert len(face["embedding"]) == 512 assert all([isinstance(num, float) for num in face["embedding"]]) mock_faceanalysis.assert_called_once() @pytest.mark.asyncio class TestCache: async def test_caches(self, mock_get_model: mock.Mock) -> None: model_cache = ModelCache() await model_cache.get("test_model_name", ModelType.IMAGE_CLASSIFICATION) await model_cache.get("test_model_name", ModelType.IMAGE_CLASSIFICATION) assert len(model_cache.cache._cache) == 1 mock_get_model.assert_called_once() async def test_kwargs_used(self, mock_get_model: mock.Mock) -> None: model_cache = ModelCache() await model_cache.get("test_model_name", ModelType.IMAGE_CLASSIFICATION, cache_dir="test_cache") mock_get_model.assert_called_once_with( ModelType.IMAGE_CLASSIFICATION, "test_model_name", cache_dir="test_cache" ) async def test_different_clip(self, mock_get_model: mock.Mock) -> None: model_cache = ModelCache() await model_cache.get("test_image_model_name", ModelType.CLIP) await model_cache.get("test_text_model_name", ModelType.CLIP) mock_get_model.assert_has_calls( [ mock.call(ModelType.CLIP, "test_image_model_name"), mock.call(ModelType.CLIP, "test_text_model_name"), ] ) assert len(model_cache.cache._cache) == 2 @mock.patch("app.models.cache.OptimisticLock", autospec=True) async def test_model_ttl(self, mock_lock_cls: mock.Mock, mock_get_model: mock.Mock) -> None: model_cache = ModelCache(ttl=100) await model_cache.get("test_model_name", ModelType.IMAGE_CLASSIFICATION) mock_lock_cls.return_value.__aenter__.return_value.cas.assert_called_with(mock.ANY, ttl=100) @mock.patch("app.models.cache.SimpleMemoryCache.expire") async def test_revalidate(self, mock_cache_expire: mock.Mock, mock_get_model: mock.Mock) -> None: model_cache = ModelCache(ttl=100, revalidate=True) await model_cache.get("test_model_name", ModelType.IMAGE_CLASSIFICATION) await model_cache.get("test_model_name", ModelType.IMAGE_CLASSIFICATION) mock_cache_expire.assert_called_once_with(mock.ANY, 100) @pytest.mark.skipif( not settings.test_full, reason="More time-consuming since it deploys the app and loads models.", ) class TestEndpoints: def test_tagging_endpoint(self, pil_image: Image.Image, deployed_app: TestClient) -> None: byte_image = BytesIO() pil_image.save(byte_image, format="jpeg") headers = {"Content-Type": "image/jpg"} response = deployed_app.post( "http://localhost:3003/image-classifier/tag-image", content=byte_image.getvalue(), headers=headers, ) assert response.status_code == 200 def test_clip_image_endpoint(self, pil_image: Image.Image, deployed_app: TestClient) -> None: byte_image = BytesIO() pil_image.save(byte_image, format="jpeg") headers = {"Content-Type": "image/jpg"} response = deployed_app.post( "http://localhost:3003/sentence-transformer/encode-image", content=byte_image.getvalue(), headers=headers, ) assert response.status_code == 200 def test_clip_text_endpoint(self, deployed_app: TestClient) -> None: response = deployed_app.post( "http://localhost:3003/sentence-transformer/encode-text", json={"text": "test search query"}, ) assert response.status_code == 200 def test_face_endpoint(self, pil_image: Image.Image, deployed_app: TestClient) -> None: byte_image = BytesIO() pil_image.save(byte_image, format="jpeg") headers = {"Content-Type": "image/jpg"} response = deployed_app.post( "http://localhost:3003/facial-recognition/detect-faces", content=byte_image.getvalue(), headers=headers, ) assert response.status_code == 200