mirror of
https://github.com/immich-app/immich.git
synced 2025-01-16 16:56:46 +01:00
feat(ml): support dynamic scaling (#12065)
feat(ml): make http keep-alive configurable Closes #12064
This commit is contained in:
parent
9f5a3f1e84
commit
f3e176e192
2 changed files with 20 additions and 15 deletions
|
@ -160,7 +160,7 @@ Redis (Sentinel) URL example JSON before encoding:
|
|||
## Machine Learning
|
||||
|
||||
| Variable | Description | Default | Containers |
|
||||
| :----------------------------------------------- | :-------------------------------------------------------------------------------------------------- | :-----------------------------------: | :--------------- |
|
||||
| :-------------------------------------------------------- | :-------------------------------------------------------------------------------------------------- | :-----------------------------------: | :--------------- |
|
||||
| `MACHINE_LEARNING_MODEL_TTL` | Inactivity time (s) before a model is unloaded (disabled if \<= 0) | `300` | machine learning |
|
||||
| `MACHINE_LEARNING_MODEL_TTL_POLL_S` | Interval (s) between checks for the model TTL (disabled if \<= 0) | `10` | machine learning |
|
||||
| `MACHINE_LEARNING_CACHE_FOLDER` | Directory where models are downloaded | `/cache` | machine learning |
|
||||
|
@ -168,6 +168,7 @@ Redis (Sentinel) URL example JSON before encoding:
|
|||
| `MACHINE_LEARNING_MODEL_INTER_OP_THREADS` | Number of parallel model operations | `1` | machine learning |
|
||||
| `MACHINE_LEARNING_MODEL_INTRA_OP_THREADS` | Number of threads for each model operation | `2` | machine learning |
|
||||
| `MACHINE_LEARNING_WORKERS`<sup>\*2</sup> | Number of worker processes to spawn | `1` | machine learning |
|
||||
| `MACHINE_LEARNING_HTTP_KEEPALIVE_TIMEOUT_S`<sup>\*3</sup> | HTTP Keep-alive time in seconds | `2` | machine learning |
|
||||
| `MACHINE_LEARNING_WORKER_TIMEOUT` | Maximum time (s) of unresponsiveness before a worker is killed | `120` (`300` if using OpenVINO image) | machine learning |
|
||||
| `MACHINE_LEARNING_PRELOAD__CLIP` | Name of a CLIP model to be preloaded and kept in cache | | machine learning |
|
||||
| `MACHINE_LEARNING_PRELOAD__FACIAL_RECOGNITION` | Name of a facial recognition model to be preloaded and kept in cache | | machine learning |
|
||||
|
@ -179,6 +180,8 @@ Redis (Sentinel) URL example JSON before encoding:
|
|||
|
||||
\*2: Since each process duplicates models in memory, changing this is not recommended unless you have abundant memory to go around.
|
||||
|
||||
\*3: For scenarios like HPA in K8S. https://github.com/immich-app/immich/discussions/12064
|
||||
|
||||
:::info
|
||||
|
||||
Other machine learning parameters can be tuned from the admin UI.
|
||||
|
|
|
@ -13,6 +13,7 @@ fi
|
|||
: "${IMMICH_HOST:=[::]}"
|
||||
: "${IMMICH_PORT:=3003}"
|
||||
: "${MACHINE_LEARNING_WORKERS:=1}"
|
||||
: "${MACHINE_LEARNING_HTTP_KEEPALIVE_TIMEOUT_S:=2}"
|
||||
|
||||
gunicorn app.main:app \
|
||||
-k app.config.CustomUvicornWorker \
|
||||
|
@ -20,4 +21,5 @@ gunicorn app.main:app \
|
|||
-w "$MACHINE_LEARNING_WORKERS" \
|
||||
-t "$MACHINE_LEARNING_WORKER_TIMEOUT" \
|
||||
--log-config-json log_conf.json \
|
||||
--keep-alive "$MACHINE_LEARNING_HTTP_KEEPALIVE_TIMEOUT_S" \
|
||||
--graceful-timeout 0
|
||||
|
|
Loading…
Reference in a new issue