mirror of
https://github.com/immich-app/immich.git
synced 2025-01-16 16:56:46 +01:00
dev(ml): fixed docker-compose.dev.yml
, updated locust (#3951)
* fixed dev docker compose * updated locustfile * deleted old script, moved comments to locustfile
This commit is contained in:
parent
bea287c5b3
commit
b7fd5dcb4a
4 changed files with 64 additions and 48 deletions
|
@ -34,7 +34,7 @@ services:
|
|||
ports:
|
||||
- 3003:3003
|
||||
volumes:
|
||||
- ../machine-learning/app:/usr/src/app
|
||||
- ../machine-learning:/usr/src/app
|
||||
- model-cache:/cache
|
||||
env_file:
|
||||
- .env
|
||||
|
|
|
@ -1,24 +0,0 @@
|
|||
export MACHINE_LEARNING_CACHE_FOLDER=/tmp/model_cache
|
||||
export MACHINE_LEARNING_MIN_FACE_SCORE=0.034 # returns 1 face per request; setting this to 0 blows up the number of faces to the thousands
|
||||
export MACHINE_LEARNING_MIN_TAG_SCORE=0.0
|
||||
export PID_FILE=/tmp/locust_pid
|
||||
export LOG_FILE=/tmp/gunicorn.log
|
||||
export HEADLESS=false
|
||||
export HOST=127.0.0.1:3003
|
||||
export CONCURRENCY=4
|
||||
export NUM_ENDPOINTS=3
|
||||
export PYTHONPATH=app
|
||||
|
||||
gunicorn app.main:app --worker-class uvicorn.workers.UvicornWorker \
|
||||
--bind $HOST --daemon --error-logfile $LOG_FILE --pid $PID_FILE
|
||||
while true ; do
|
||||
echo "Loading models..."
|
||||
sleep 5
|
||||
if cat $LOG_FILE | grep -q -E "startup complete"; then break; fi
|
||||
done
|
||||
|
||||
# "users" are assigned only one task, so multiply concurrency by the number of tasks
|
||||
locust --host http://$HOST --web-host 127.0.0.1 \
|
||||
--run-time 120s --users $(($CONCURRENCY * $NUM_ENDPOINTS)) $(if $HEADLESS; then echo "--headless"; fi)
|
||||
|
||||
if [[ -e $PID_FILE ]]; then kill $(cat $PID_FILE); fi
|
|
@ -1,13 +1,32 @@
|
|||
from io import BytesIO
|
||||
import json
|
||||
from typing import Any
|
||||
|
||||
from locust import HttpUser, events, task
|
||||
from locust.env import Environment
|
||||
from PIL import Image
|
||||
from argparse import ArgumentParser
|
||||
byte_image = BytesIO()
|
||||
|
||||
|
||||
@events.init_command_line_parser.add_listener
|
||||
def _(parser: ArgumentParser) -> None:
|
||||
parser.add_argument("--tag-model", type=str, default="microsoft/resnet-50")
|
||||
parser.add_argument("--clip-model", type=str, default="ViT-B-32::openai")
|
||||
parser.add_argument("--face-model", type=str, default="buffalo_l")
|
||||
parser.add_argument("--tag-min-score", type=int, default=0.0,
|
||||
help="Returns all tags at or above this score. The default returns all tags.")
|
||||
parser.add_argument("--face-min-score", type=int, default=0.034,
|
||||
help=("Returns all faces at or above this score. The default returns 1 face per request; "
|
||||
"setting this to 0 blows up the number of faces to the thousands."))
|
||||
parser.add_argument("--image-size", type=int, default=1000)
|
||||
|
||||
|
||||
@events.test_start.add_listener
|
||||
def on_test_start(environment, **kwargs):
|
||||
def on_test_start(environment: Environment, **kwargs: Any) -> None:
|
||||
global byte_image
|
||||
image = Image.new("RGB", (1000, 1000))
|
||||
assert environment.parsed_options is not None
|
||||
image = Image.new("RGB", (environment.parsed_options.image_size, environment.parsed_options.image_size))
|
||||
byte_image = BytesIO()
|
||||
image.save(byte_image, format="jpeg")
|
||||
|
||||
|
@ -19,34 +38,55 @@ class InferenceLoadTest(HttpUser):
|
|||
headers: dict[str, str] = {"Content-Type": "image/jpg"}
|
||||
|
||||
# re-use the image across all instances in a process
|
||||
def on_start(self):
|
||||
def on_start(self) -> None:
|
||||
global byte_image
|
||||
self.data = byte_image.getvalue()
|
||||
|
||||
|
||||
class ClassificationLoadTest(InferenceLoadTest):
|
||||
class ClassificationFormDataLoadTest(InferenceLoadTest):
|
||||
@task
|
||||
def classify(self):
|
||||
self.client.post(
|
||||
"/image-classifier/tag-image", data=self.data, headers=self.headers
|
||||
)
|
||||
def classify(self) -> None:
|
||||
data = [
|
||||
("modelName", self.environment.parsed_options.clip_model),
|
||||
("modelType", "clip"),
|
||||
("options", json.dumps({"minScore": self.environment.parsed_options.tag_min_score})),
|
||||
]
|
||||
files = {"image": self.data}
|
||||
self.client.post("/predict", data=data, files=files)
|
||||
|
||||
|
||||
class CLIPLoadTest(InferenceLoadTest):
|
||||
class CLIPTextFormDataLoadTest(InferenceLoadTest):
|
||||
@task
|
||||
def encode_image(self):
|
||||
self.client.post(
|
||||
"/sentence-transformer/encode-image",
|
||||
data=self.data,
|
||||
headers=self.headers,
|
||||
)
|
||||
def encode_text(self) -> None:
|
||||
data = [
|
||||
("modelName", self.environment.parsed_options.clip_model),
|
||||
("modelType", "clip"),
|
||||
("options", json.dumps({"mode": "text"})),
|
||||
("text", "test search query")
|
||||
]
|
||||
self.client.post("/predict", data=data)
|
||||
|
||||
|
||||
class RecognitionLoadTest(InferenceLoadTest):
|
||||
class CLIPVisionFormDataLoadTest(InferenceLoadTest):
|
||||
@task
|
||||
def recognize(self):
|
||||
self.client.post(
|
||||
"/facial-recognition/detect-faces",
|
||||
data=self.data,
|
||||
headers=self.headers,
|
||||
)
|
||||
def encode_image(self) -> None:
|
||||
data = [
|
||||
("modelName", self.environment.parsed_options.clip_model),
|
||||
("modelType", "clip"),
|
||||
("options", json.dumps({"mode": "vision"})),
|
||||
]
|
||||
files = {"image": self.data}
|
||||
self.client.post("/predict", data=data, files=files)
|
||||
|
||||
|
||||
class RecognitionFormDataLoadTest(InferenceLoadTest):
|
||||
@task
|
||||
def recognize(self) -> None:
|
||||
data = [
|
||||
("modelName", self.environment.parsed_options.face_model),
|
||||
("modelType", "facial-recognition"),
|
||||
("options", json.dumps({"minScore": self.environment.parsed_options.face_min_score})),
|
||||
]
|
||||
files = {"image": self.data}
|
||||
|
||||
self.client.post("/predict", data=data, files=files)
|
||||
|
|
Loading…
Reference in a new issue