mirror of
https://github.com/immich-app/immich.git
synced 2024-12-29 15:11:58 +00:00
fix(ml): better model unloading (#3340)
* restart process on inactivity * formatting * always update `last_called` * load models sequentially * renamed variable, updated docs * formatting * made poll env name consistent with model ttl env
This commit is contained in:
parent
98f87c6548
commit
a6af4892e3
3 changed files with 42 additions and 11 deletions
|
@ -188,19 +188,18 @@ Typesense URL example JSON before encoding:
|
|||
|
||||
| Variable | Description | Default | Services |
|
||||
| :----------------------------------------------- | :---------------------------------------------------------------- | :-----------------: | :--------------- |
|
||||
| `MACHINE_LEARNING_MODEL_TTL`<sup>\*1</sup> | Inactivity time (s) before a model is unloaded (disabled if <= 0) | `0` | machine learning |
|
||||
| `MACHINE_LEARNING_MODEL_TTL` | Inactivity time (s) before a model is unloaded (disabled if <= 0) | `300` | machine learning |
|
||||
| `MACHINE_LEARNING_MODEL_TTL_POLL_S` | Interval (s) between checks for the model TTL (disabled if <= 0) | `10` | machine learning |
|
||||
| `MACHINE_LEARNING_CACHE_FOLDER` | Directory where models are downloaded | `/cache` | machine learning |
|
||||
| `MACHINE_LEARNING_REQUEST_THREADS`<sup>\*2</sup> | Thread count of the request thread pool (disabled if <= 0) | number of CPU cores | machine learning |
|
||||
| `MACHINE_LEARNING_REQUEST_THREADS`<sup>\*1</sup> | Thread count of the request thread pool (disabled if <= 0) | number of CPU cores | machine learning |
|
||||
| `MACHINE_LEARNING_MODEL_INTER_OP_THREADS` | Number of parallel model operations | `1` | machine learning |
|
||||
| `MACHINE_LEARNING_MODEL_INTRA_OP_THREADS` | Number of threads for each model operation | `2` | machine learning |
|
||||
| `MACHINE_LEARNING_WORKERS`<sup>\*3</sup> | Number of worker processes to spawn | `1` | machine learning |
|
||||
| `MACHINE_LEARNING_WORKERS`<sup>\*2</sup> | Number of worker processes to spawn | `1` | machine learning |
|
||||
| `MACHINE_LEARNING_WORKER_TIMEOUT` | Maximum time (s) of unresponsiveness before a worker is killed | `120` | machine learning |
|
||||
|
||||
\*1: This is an experimental feature. It may result in increased memory use over time when loading models repeatedly.
|
||||
\*1: It is recommended to begin with this parameter when changing the concurrency levels of the machine learning service and then tune the other ones.
|
||||
|
||||
\*2: It is recommended to begin with this parameter when changing the concurrency levels of the machine learning service and then tune the other ones.
|
||||
|
||||
\*3: Since each process duplicates models in memory, changing this is not recommended unless you have abundant memory to go around.
|
||||
\*2: Since each process duplicates models in memory, changing this is not recommended unless you have abundant memory to go around.
|
||||
|
||||
:::info
|
||||
|
||||
|
|
|
@ -13,7 +13,8 @@ from .schemas import ModelType
|
|||
|
||||
class Settings(BaseSettings):
|
||||
cache_folder: str = "/cache"
|
||||
model_ttl: int = 0
|
||||
model_ttl: int = 300
|
||||
model_ttl_poll_s: int = 10
|
||||
host: str = "0.0.0.0"
|
||||
port: int = 3003
|
||||
workers: int = 1
|
||||
|
|
|
@ -1,5 +1,9 @@
|
|||
import asyncio
|
||||
import gc
|
||||
import os
|
||||
import sys
|
||||
import threading
|
||||
import time
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from typing import Any
|
||||
from zipfile import BadZipFile
|
||||
|
@ -34,7 +38,10 @@ def init_state() -> None:
|
|||
)
|
||||
# asyncio is a huge bottleneck for performance, so we use a thread pool to run blocking code
|
||||
app.state.thread_pool = ThreadPoolExecutor(settings.request_threads) if settings.request_threads > 0 else None
|
||||
app.state.locks = {model_type: threading.Lock() for model_type in ModelType}
|
||||
app.state.lock = threading.Lock()
|
||||
app.state.last_called = None
|
||||
if settings.model_ttl > 0 and settings.model_ttl_poll_s > 0:
|
||||
asyncio.ensure_future(idle_shutdown_task())
|
||||
log.info(f"Initialized request thread pool with {settings.request_threads} threads.")
|
||||
|
||||
|
||||
|
@ -79,9 +86,9 @@ async def predict(
|
|||
|
||||
|
||||
async def run(model: InferenceModel, inputs: Any) -> Any:
|
||||
app.state.last_called = time.time()
|
||||
if app.state.thread_pool is None:
|
||||
return model.predict(inputs)
|
||||
|
||||
return await asyncio.get_running_loop().run_in_executor(app.state.thread_pool, model.predict, inputs)
|
||||
|
||||
|
||||
|
@ -90,7 +97,7 @@ async def load(model: InferenceModel) -> InferenceModel:
|
|||
return model
|
||||
|
||||
def _load() -> None:
|
||||
with app.state.locks[model.model_type]:
|
||||
with app.state.lock:
|
||||
model.load()
|
||||
|
||||
loop = asyncio.get_running_loop()
|
||||
|
@ -113,3 +120,27 @@ async def load(model: InferenceModel) -> InferenceModel:
|
|||
else:
|
||||
await loop.run_in_executor(app.state.thread_pool, _load)
|
||||
return model
|
||||
|
||||
|
||||
async def idle_shutdown_task() -> None:
|
||||
while True:
|
||||
log.debug("Checking for inactivity...")
|
||||
if app.state.last_called is not None and time.time() - app.state.last_called > settings.model_ttl:
|
||||
log.info("Shutting down due to inactivity.")
|
||||
loop = asyncio.get_running_loop()
|
||||
for task in asyncio.all_tasks(loop):
|
||||
if task is not asyncio.current_task():
|
||||
try:
|
||||
task.cancel()
|
||||
except asyncio.CancelledError:
|
||||
pass
|
||||
sys.stderr.close()
|
||||
sys.stdout.close()
|
||||
sys.stdout = sys.stderr = open(os.devnull, "w")
|
||||
try:
|
||||
await app.state.model_cache.cache.clear()
|
||||
gc.collect()
|
||||
loop.stop()
|
||||
except asyncio.CancelledError:
|
||||
pass
|
||||
await asyncio.sleep(settings.model_ttl_poll_s)
|
||||
|
|
Loading…
Reference in a new issue