1
0
Fork 0
mirror of https://github.com/immich-app/immich.git synced 2024-12-28 22:51:59 +00:00

optimized scrfd code

This commit is contained in:
mertalev 2024-06-09 23:03:34 -04:00
parent fb4fe5d40b
commit 8d2a849edc
No known key found for this signature in database
GPG key ID: 9181CD92C0A1C5E3
6 changed files with 411 additions and 32 deletions

View file

@ -1,44 +1,33 @@
from pathlib import Path
from typing import Any from typing import Any
import numpy as np import numpy as np
import onnxruntime as ort import onnxruntime as ort
from insightface.model_zoo import RetinaFace
from numpy.typing import NDArray from numpy.typing import NDArray
from app.models.base import InferenceModel from app.models.base import InferenceModel
from app.models.session import ort_has_batch_dim, ort_squeeze_outputs from app.models.session import ort_has_batch_dim, ort_expand_outputs
from app.models.transforms import decode_cv2 from app.models.transforms import decode_pil
from app.schemas import FaceDetectionOutput, ModelSession, ModelTask, ModelType from app.schemas import FaceDetectionOutput, ModelSession, ModelTask, ModelType
from .scrfd import SCRFD
from PIL import Image
from PIL.ImageOps import pad
class FaceDetector(InferenceModel): class FaceDetector(InferenceModel):
depends = [] depends = []
identity = (ModelType.DETECTION, ModelTask.FACIAL_RECOGNITION) identity = (ModelType.DETECTION, ModelTask.FACIAL_RECOGNITION)
def __init__(
self,
model_name: str,
min_score: float = 0.7,
cache_dir: Path | str | None = None,
**model_kwargs: Any,
) -> None:
self.min_score = model_kwargs.pop("minScore", min_score)
super().__init__(model_name, cache_dir, **model_kwargs)
def _load(self) -> ModelSession: def _load(self) -> ModelSession:
session = self._make_session(self.model_path) session = self._make_session(self.model_path)
if isinstance(session, ort.InferenceSession) and ort_has_batch_dim(session): if isinstance(session, ort.InferenceSession) and not ort_has_batch_dim(session):
ort_squeeze_outputs(session) ort_expand_outputs(session)
self.model = RetinaFace(session=session) self.model = SCRFD(session=session)
self.model.prepare(ctx_id=0, det_thresh=self.min_score, input_size=(640, 640))
return session return session
def _predict(self, inputs: NDArray[np.uint8] | bytes, **kwargs: Any) -> FaceDetectionOutput: def _predict(self, inputs: NDArray[np.uint8] | bytes | Image.Image, **kwargs: Any) -> FaceDetectionOutput:
inputs = decode_cv2(inputs) inputs = self._transform(inputs)
bboxes, landmarks = self._detect(inputs) [bboxes], [landmarks] = self.model.detect(inputs, threshold=kwargs.pop("minScore", 0.7))
return { return {
"boxes": bboxes[:, :4].round(), "boxes": bboxes[:, :4].round(),
"scores": bboxes[:, 4], "scores": bboxes[:, 4],
@ -48,5 +37,7 @@ class FaceDetector(InferenceModel):
def _detect(self, inputs: NDArray[np.uint8] | bytes) -> tuple[NDArray[np.float32], NDArray[np.float32]]: def _detect(self, inputs: NDArray[np.uint8] | bytes) -> tuple[NDArray[np.float32], NDArray[np.float32]]:
return self.model.detect(inputs) # type: ignore return self.model.detect(inputs) # type: ignore
def configure(self, **kwargs: Any) -> None: def _transform(self, inputs: NDArray[np.uint8] | bytes | Image.Image) -> NDArray[np.uint8]:
self.model.det_thresh = kwargs.pop("minScore", self.model.det_thresh) image = decode_pil(inputs)
padded = pad(image, (640, 640), method=Image.Resampling.BICUBIC)
return np.array(padded, dtype=np.uint8)[None, ...]

View file

@ -0,0 +1,325 @@
# Based on InsightFace-REST by SthPhoenix https://github.com/SthPhoenix/InsightFace-REST/blob/master/src/api_trt/modules/model_zoo/detectors/scrfd.py
# Primary changes made:
# 1. Removed CuPy-related code
# 2. Adapted proposal generation to be thread-safe
# 3. Added typing
# 4. Assume RGB input
# 5. Removed unused variables
# Copyright 2021 SthPhoenix
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# -*- coding: utf-8 -*-
# Based on Jia Guo reference implementation at
# https://github.com/deepinsight/insightface/blob/master/detection/scrfd/tools/scrfd.py
from __future__ import division
import cv2
import numpy as np
from numba import njit
from app.schemas import ModelSession
from numpy.typing import NDArray
@njit(cache=True, nogil=True)
def nms(dets, threshold: float = 0.4) -> NDArray[np.float32]:
x1 = dets[:, 0]
y1 = dets[:, 1]
x2 = dets[:, 2]
y2 = dets[:, 3]
scores = dets[:, 4]
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
ovr = inter / (areas[i] + areas[order[1:]] - inter)
inds = np.where(ovr <= threshold)[0]
order = order[inds + 1]
return np.asarray(keep)
@njit(fastmath=True, cache=True, nogil=True)
def single_distance2bbox(point: NDArray[np.float32], distance: NDArray[np.float32], stride: int) -> NDArray[np.float32]:
"""
Fast conversion of single bbox distances to coordinates
:param point: Anchor point
:param distance: Bbox distances from anchor point
:param stride: Current stride scale
:return: bbox
"""
distance[0] = point[0] - distance[0] * stride
distance[1] = point[1] - distance[1] * stride
distance[2] = point[0] + distance[2] * stride
distance[3] = point[1] + distance[3] * stride
return distance
@njit(fastmath=True, cache=True, nogil=True)
def single_distance2kps(point: NDArray[np.float32], distance: NDArray[np.float32], stride: int) -> NDArray[np.float32]:
"""
Fast conversion of single keypoint distances to coordinates
:param point: Anchor point
:param distance: Keypoint distances from anchor point
:param stride: Current stride scale
:return: keypoint
"""
for ix in range(0, distance.shape[0], 2):
distance[ix] = distance[ix] * stride + point[0]
distance[ix + 1] = distance[ix + 1] * stride + point[1]
return distance
@njit(fastmath=True, cache=True, nogil=True)
def generate_proposals(
score_blob: NDArray[np.float32],
bbox_blob: NDArray[np.float32],
kpss_blob: NDArray[np.float32],
stride: int,
anchors: NDArray[np.float32],
threshold: float,
) -> tuple[NDArray[np.float32], NDArray[np.float32], NDArray[np.float32]]:
"""
Convert distances from anchors to actual coordinates on source image
and filter proposals by confidence threshold.
:param score_blob: Raw scores for stride
:param bbox_blob: Raw bbox distances for stride
:param kpss_blob: Raw keypoints distances for stride
:param stride: Stride scale
:param anchors: Precomputed anchors for stride
:param threshold: Confidence threshold
:return: Filtered scores, bboxes and keypoints
"""
idxs = []
for ix in range(score_blob.shape[0]):
if score_blob[ix][0] > threshold:
idxs.append(ix)
score_out = np.empty((len(idxs), 1), dtype="float32")
bbox_out = np.empty((len(idxs), 4), dtype="float32")
kpss_out = np.empty((len(idxs), 10), dtype="float32")
for i in range(len(idxs)):
ix = idxs[i]
score_out[i] = score_blob[ix]
bbox_out[i] = single_distance2bbox(anchors[ix], bbox_blob[ix], stride)
kpss_out[i] = single_distance2kps(anchors[ix], kpss_blob[ix], stride)
return score_out, bbox_out, kpss_out
@njit(fastmath=True, cache=True, nogil=True)
def filter(
bboxes_list: NDArray[np.float32],
kpss_list: NDArray[np.float32],
scores_list: NDArray[np.float32],
nms_threshold: float = 0.4,
) -> tuple[NDArray[np.float32], NDArray[np.float32]]:
"""
Filter postprocessed network outputs with NMS
:param bboxes_list: List of bboxes (np.ndarray)
:param kpss_list: List of keypoints (np.ndarray)
:param scores_list: List of scores (np.ndarray)
:return: Face bboxes with scores [t,l,b,r,score], and key points
"""
pre_det = np.hstack((bboxes_list, scores_list))
keep = nms(pre_det, threshold=nms_threshold)
det = pre_det[keep, :]
kpss = kpss_list[keep, :]
kpss = kpss.reshape((kpss.shape[0], -1, 2))
return det, kpss
class SCRFD:
def __init__(self, session: ModelSession):
self.session = session
self.center_cache: dict[tuple[int, int], NDArray[np.float32]] = {}
self.nms_threshold = 0.4
self.fmc = 3
self._feat_stride_fpn = [8, 16, 32]
self._num_anchors = 2
def prepare(self, nms_threshold: float = 0.4) -> None:
"""
Populate class parameters
:param nms_threshold: Threshold for NMS IoU
"""
self.nms_threshold = nms_threshold
def detect(
self, imgs: NDArray[np.uint8], threshold: float = 0.5
) -> tuple[list[NDArray[np.float32]], list[NDArray[np.float32]]]:
"""
Run detection pipeline for provided images
:param img: Raw image as nd.ndarray with HWC shape
:param threshold: Confidence threshold
:return: Face bboxes with scores [t,l,b,r,score], and key points
"""
height, width = imgs.shape[1:3]
blob = self._preprocess(imgs)
net_outs = self._forward(blob)
batch_bboxes, batch_kpss, batch_scores = self._postprocess(net_outs, height, width, threshold)
dets_list = []
kpss_list = []
for e in range(imgs.shape[0]):
if len(batch_bboxes[e]) == 0:
det, kpss = np.zeros((0, 5), dtype="float32"), np.zeros((0, 10), dtype="float32")
else:
det, kpss = filter(batch_bboxes[e], batch_kpss[e], batch_scores[e], self.nms_threshold)
dets_list.append(det)
kpss_list.append(kpss)
return dets_list, kpss_list
@staticmethod
def _build_anchors(
input_height: int, input_width: int, strides: list[int], num_anchors: int
) -> NDArray[np.float32]:
"""
Precompute anchor points for provided image size
:param input_height: Input image height
:param input_width: Input image width
:param strides: Model strides
:param num_anchors: Model num anchors
:return: box centers
"""
centers = []
for stride in strides:
height = input_height // stride
width = input_width // stride
anchor_centers = np.stack(np.mgrid[:height, :width][::-1], axis=-1).astype(np.float32)
anchor_centers = (anchor_centers * stride).reshape((-1, 2))
if num_anchors > 1:
anchor_centers = np.stack([anchor_centers] * num_anchors, axis=1).reshape((-1, 2))
centers.append(anchor_centers)
return centers
def _preprocess(self, images: NDArray[np.uint8]):
"""
Normalize image on CPU if backend can't provide CUDA stream,
otherwise preprocess image on GPU using CuPy
:param img: Raw image as np.ndarray with HWC shape
:return: Preprocessed image or None if image was processed on device
"""
input_size = tuple(images[0].shape[0:2][::-1])
return cv2.dnn.blobFromImages(images, 1.0 / 128, input_size, (127.5, 127.5, 127.5), swapRB=False)
def _forward(self, blob: NDArray[np.float32]) -> list[NDArray[np.float32]]:
"""
Send input data to inference backend.
:param blob: Preprocessed image of shape NCHW or None
:return: network outputs
"""
return self.session.run(None, {"input.1": blob})
def _postprocess(
self, net_outs: list[NDArray[np.float32]], height: int, width: int, threshold: float
) -> tuple[list[NDArray[np.float32]], list[NDArray[np.float32]], list[NDArray[np.float32]]]:
"""
Precompute anchor points for provided image size and process network outputs
:param net_outs: Network outputs
:param input_height: Input image height
:param input_width: Input image width
:param threshold: Confidence threshold
:return: filtered bboxes, keypoints and scores
"""
key = (height, width)
if not self.center_cache.get(key):
self.center_cache[key] = self._build_anchors(height, width, self._feat_stride_fpn, self._num_anchors)
anchor_centers = self.center_cache[key]
bboxes, kpss, scores = self._process_strides(net_outs, threshold, anchor_centers)
return bboxes, kpss, scores
def _process_strides(
self, net_outs: list[NDArray[np.float32]], threshold: float, anchors: NDArray[np.float32]
) -> tuple[list[NDArray[np.float32]], list[NDArray[np.float32]], list[NDArray[np.float32]]]:
"""
Process network outputs by strides and return results proposals filtered by threshold
:param net_outs: Network outputs
:param threshold: Confidence threshold
:param anchor_centers: Precomputed anchor centers for all strides
:return: filtered bboxes, keypoints and scores
"""
batch_size = net_outs[0].shape[0]
bboxes_by_img = []
kpss_by_img = []
scores_by_img = []
for batch in range(batch_size):
scores_strided = []
bboxes_strided = []
kpss_strided = []
for idx, stride in enumerate(self._feat_stride_fpn):
score_blob = net_outs[idx][batch]
bbox_blob = net_outs[idx + self.fmc][batch]
kpss_blob = net_outs[idx + self.fmc * 2][batch]
stride_anchors = anchors[idx]
score_list, bbox_list, kpss_list = generate_proposals(
score_blob,
bbox_blob,
kpss_blob,
stride,
stride_anchors,
threshold,
)
scores_strided.append(score_list)
bboxes_strided.append(bbox_list)
kpss_strided.append(kpss_list)
bboxes_by_img.append(np.concatenate(bboxes_strided, axis=0))
kpss_by_img.append(np.concatenate(kpss_strided, axis=0))
scores_by_img.append(np.concatenate(scores_strided, axis=0))
return bboxes_by_img, kpss_by_img, scores_by_img

View file

@ -12,12 +12,12 @@ def ort_has_batch_dim(session: ort.InferenceSession) -> bool:
return session.get_inputs()[0].shape[0] == "batch" return session.get_inputs()[0].shape[0] == "batch"
def ort_squeeze_outputs(session: ort.InferenceSession) -> None: def ort_expand_outputs(session: ort.InferenceSession) -> None:
original_run = session.run original_run = session.run
def run(output_names: list[str], input_feed: dict[str, NDArray[np.float32]]) -> list[NDArray[np.float32]]: def run(output_names: list[str], input_feed: dict[str, NDArray[np.float32]]) -> list[NDArray[np.float32]]:
out: list[NDArray[np.float32]] = original_run(output_names, input_feed) out: list[NDArray[np.float32]] = original_run(output_names, input_feed)
out = [o.squeeze(axis=0) for o in out] out = [np.expand_dims(o, axis=0) for o in out]
return out return out
session.run = run session.run = run

View file

@ -3,6 +3,7 @@ from typing import IO
import cv2 import cv2
import numpy as np import numpy as np
from numba import njit
from numpy.typing import NDArray from numpy.typing import NDArray
from PIL import Image from PIL import Image
@ -30,10 +31,11 @@ def to_numpy(img: Image.Image) -> NDArray[np.float32]:
return np.asarray(img if img.mode == "RGB" else img.convert("RGB"), dtype=np.float32) / 255.0 return np.asarray(img if img.mode == "RGB" else img.convert("RGB"), dtype=np.float32) / 255.0
@njit(cache=True, fastmath=True, nogil=True)
def normalize( def normalize(
img: NDArray[np.float32], mean: float | NDArray[np.float32], std: float | NDArray[np.float32] img: NDArray[np.float32], mean: float | NDArray[np.float32], std: float | NDArray[np.float32]
) -> NDArray[np.float32]: ) -> NDArray[np.float32]:
return np.divide(img - mean, std, dtype=np.float32) return (img - mean) / std
def get_pil_resampling(resample: str) -> Image.Resampling: def get_pil_resampling(resample: str) -> Image.Resampling:

View file

@ -1528,6 +1528,36 @@ files = [
lint = ["pre-commit (>=3.3)"] lint = ["pre-commit (>=3.3)"]
test = ["pytest (>=7.4)", "pytest-cov (>=4.1)"] test = ["pytest (>=7.4)", "pytest-cov (>=4.1)"]
[[package]]
name = "llvmlite"
version = "0.42.0"
description = "lightweight wrapper around basic LLVM functionality"
optional = false
python-versions = ">=3.9"
files = [
{file = "llvmlite-0.42.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:3366938e1bf63d26c34fbfb4c8e8d2ded57d11e0567d5bb243d89aab1eb56098"},
{file = "llvmlite-0.42.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c35da49666a21185d21b551fc3caf46a935d54d66969d32d72af109b5e7d2b6f"},
{file = "llvmlite-0.42.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:70f44ccc3c6220bd23e0ba698a63ec2a7d3205da0d848804807f37fc243e3f77"},
{file = "llvmlite-0.42.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:763f8d8717a9073b9e0246998de89929071d15b47f254c10eef2310b9aac033d"},
{file = "llvmlite-0.42.0-cp310-cp310-win_amd64.whl", hash = "sha256:8d90edf400b4ceb3a0e776b6c6e4656d05c7187c439587e06f86afceb66d2be5"},
{file = "llvmlite-0.42.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:ae511caed28beaf1252dbaf5f40e663f533b79ceb408c874c01754cafabb9cbf"},
{file = "llvmlite-0.42.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:81e674c2fe85576e6c4474e8c7e7aba7901ac0196e864fe7985492b737dbab65"},
{file = "llvmlite-0.42.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bb3975787f13eb97629052edb5017f6c170eebc1c14a0433e8089e5db43bcce6"},
{file = "llvmlite-0.42.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c5bece0cdf77f22379f19b1959ccd7aee518afa4afbd3656c6365865f84903f9"},
{file = "llvmlite-0.42.0-cp311-cp311-win_amd64.whl", hash = "sha256:7e0c4c11c8c2aa9b0701f91b799cb9134a6a6de51444eff5a9087fc7c1384275"},
{file = "llvmlite-0.42.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:08fa9ab02b0d0179c688a4216b8939138266519aaa0aa94f1195a8542faedb56"},
{file = "llvmlite-0.42.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:b2fce7d355068494d1e42202c7aff25d50c462584233013eb4470c33b995e3ee"},
{file = "llvmlite-0.42.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ebe66a86dc44634b59a3bc860c7b20d26d9aaffcd30364ebe8ba79161a9121f4"},
{file = "llvmlite-0.42.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d47494552559e00d81bfb836cf1c4d5a5062e54102cc5767d5aa1e77ccd2505c"},
{file = "llvmlite-0.42.0-cp312-cp312-win_amd64.whl", hash = "sha256:05cb7e9b6ce69165ce4d1b994fbdedca0c62492e537b0cc86141b6e2c78d5888"},
{file = "llvmlite-0.42.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:bdd3888544538a94d7ec99e7c62a0cdd8833609c85f0c23fcb6c5c591aec60ad"},
{file = "llvmlite-0.42.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:d0936c2067a67fb8816c908d5457d63eba3e2b17e515c5fe00e5ee2bace06040"},
{file = "llvmlite-0.42.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a78ab89f1924fc11482209f6799a7a3fc74ddc80425a7a3e0e8174af0e9e2301"},
{file = "llvmlite-0.42.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d7599b65c7af7abbc978dbf345712c60fd596aa5670496561cc10e8a71cebfb2"},
{file = "llvmlite-0.42.0-cp39-cp39-win_amd64.whl", hash = "sha256:43d65cc4e206c2e902c1004dd5418417c4efa6c1d04df05c6c5675a27e8ca90e"},
{file = "llvmlite-0.42.0.tar.gz", hash = "sha256:f92b09243c0cc3f457da8b983f67bd8e1295d0f5b3746c7a1861d7a99403854a"},
]
[[package]] [[package]]
name = "locust" name = "locust"
version = "2.28.0" version = "2.28.0"
@ -1864,6 +1894,40 @@ doc = ["nb2plots (>=0.7)", "nbconvert (<7.9)", "numpydoc (>=1.6)", "pillow (>=9.
extra = ["lxml (>=4.6)", "pydot (>=1.4.2)", "pygraphviz (>=1.11)", "sympy (>=1.10)"] extra = ["lxml (>=4.6)", "pydot (>=1.4.2)", "pygraphviz (>=1.11)", "sympy (>=1.10)"]
test = ["pytest (>=7.2)", "pytest-cov (>=4.0)"] test = ["pytest (>=7.2)", "pytest-cov (>=4.0)"]
[[package]]
name = "numba"
version = "0.59.1"
description = "compiling Python code using LLVM"
optional = false
python-versions = ">=3.9"
files = [
{file = "numba-0.59.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:97385a7f12212c4f4bc28f648720a92514bee79d7063e40ef66c2d30600fd18e"},
{file = "numba-0.59.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:0b77aecf52040de2a1eb1d7e314497b9e56fba17466c80b457b971a25bb1576d"},
{file = "numba-0.59.1-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:3476a4f641bfd58f35ead42f4dcaf5f132569c4647c6f1360ccf18ee4cda3990"},
{file = "numba-0.59.1-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:525ef3f820931bdae95ee5379c670d5c97289c6520726bc6937a4a7d4230ba24"},
{file = "numba-0.59.1-cp310-cp310-win_amd64.whl", hash = "sha256:990e395e44d192a12105eca3083b61307db7da10e093972ca285c85bef0963d6"},
{file = "numba-0.59.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:43727e7ad20b3ec23ee4fc642f5b61845c71f75dd2825b3c234390c6d8d64051"},
{file = "numba-0.59.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:411df625372c77959570050e861981e9d196cc1da9aa62c3d6a836b5cc338966"},
{file = "numba-0.59.1-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:2801003caa263d1e8497fb84829a7ecfb61738a95f62bc05693fcf1733e978e4"},
{file = "numba-0.59.1-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:dd2842fac03be4e5324ebbbd4d2d0c8c0fc6e0df75c09477dd45b288a0777389"},
{file = "numba-0.59.1-cp311-cp311-win_amd64.whl", hash = "sha256:0594b3dfb369fada1f8bb2e3045cd6c61a564c62e50cf1f86b4666bc721b3450"},
{file = "numba-0.59.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:1cce206a3b92836cdf26ef39d3a3242fec25e07f020cc4feec4c4a865e340569"},
{file = "numba-0.59.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:8c8b4477763cb1fbd86a3be7050500229417bf60867c93e131fd2626edb02238"},
{file = "numba-0.59.1-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:7d80bce4ef7e65bf895c29e3889ca75a29ee01da80266a01d34815918e365835"},
{file = "numba-0.59.1-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:f7ad1d217773e89a9845886401eaaab0a156a90aa2f179fdc125261fd1105096"},
{file = "numba-0.59.1-cp312-cp312-win_amd64.whl", hash = "sha256:5bf68f4d69dd3a9f26a9b23548fa23e3bcb9042e2935257b471d2a8d3c424b7f"},
{file = "numba-0.59.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4e0318ae729de6e5dbe64c75ead1a95eb01fabfe0e2ebed81ebf0344d32db0ae"},
{file = "numba-0.59.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0f68589740a8c38bb7dc1b938b55d1145244c8353078eea23895d4f82c8b9ec1"},
{file = "numba-0.59.1-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:649913a3758891c77c32e2d2a3bcbedf4a69f5fea276d11f9119677c45a422e8"},
{file = "numba-0.59.1-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:9712808e4545270291d76b9a264839ac878c5eb7d8b6e02c970dc0ac29bc8187"},
{file = "numba-0.59.1-cp39-cp39-win_amd64.whl", hash = "sha256:8d51ccd7008a83105ad6a0082b6a2b70f1142dc7cfd76deb8c5a862367eb8c86"},
{file = "numba-0.59.1.tar.gz", hash = "sha256:76f69132b96028d2774ed20415e8c528a34e3299a40581bae178f0994a2f370b"},
]
[package.dependencies]
llvmlite = "==0.42.*"
numpy = ">=1.22,<1.27"
[[package]] [[package]]
name = "numpy" name = "numpy"
version = "1.26.3" version = "1.26.3"
@ -2037,11 +2101,8 @@ description = "ONNX Runtime is a runtime accelerator for Machine Learning models
optional = false optional = false
python-versions = "*" python-versions = "*"
files = [ files = [
{file = "onnxruntime_openvino-1.17.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6ed693011b472f9a617b2d5c4785d5fa1e1b77f7cb2b02e47b899534ec6c6396"},
{file = "onnxruntime_openvino-1.17.1-cp310-cp310-win_amd64.whl", hash = "sha256:5152b5e56e83e022ced2986700d68dd8ba7b1466761725ce774f679c5710ab87"}, {file = "onnxruntime_openvino-1.17.1-cp310-cp310-win_amd64.whl", hash = "sha256:5152b5e56e83e022ced2986700d68dd8ba7b1466761725ce774f679c5710ab87"},
{file = "onnxruntime_openvino-1.17.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2ce3b1aa06d6b8b732d314d217028ec4735de5806215c44d3bdbcad03b9260d5"},
{file = "onnxruntime_openvino-1.17.1-cp311-cp311-win_amd64.whl", hash = "sha256:21133a701bb07ea19e01f48b8c23beee575f2e879f49173843f275d7c91a625a"}, {file = "onnxruntime_openvino-1.17.1-cp311-cp311-win_amd64.whl", hash = "sha256:21133a701bb07ea19e01f48b8c23beee575f2e879f49173843f275d7c91a625a"},
{file = "onnxruntime_openvino-1.17.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:76824dac3c392ad4b812f29c18be2055ab3bba2e3c111e44baae847b33d5b081"},
] ]
[package.dependencies] [package.dependencies]
@ -2601,7 +2662,6 @@ files = [
{file = "PyYAML-6.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:bf07ee2fef7014951eeb99f56f39c9bb4af143d8aa3c21b1677805985307da34"}, {file = "PyYAML-6.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:bf07ee2fef7014951eeb99f56f39c9bb4af143d8aa3c21b1677805985307da34"},
{file = "PyYAML-6.0.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:855fb52b0dc35af121542a76b9a84f8d1cd886ea97c84703eaa6d88e37a2ad28"}, {file = "PyYAML-6.0.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:855fb52b0dc35af121542a76b9a84f8d1cd886ea97c84703eaa6d88e37a2ad28"},
{file = "PyYAML-6.0.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:40df9b996c2b73138957fe23a16a4f0ba614f4c0efce1e9406a184b6d07fa3a9"}, {file = "PyYAML-6.0.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:40df9b996c2b73138957fe23a16a4f0ba614f4c0efce1e9406a184b6d07fa3a9"},
{file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a08c6f0fe150303c1c6b71ebcd7213c2858041a7e01975da3a99aed1e7a378ef"},
{file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c22bec3fbe2524cde73d7ada88f6566758a8f7227bfbf93a408a9d86bcc12a0"}, {file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c22bec3fbe2524cde73d7ada88f6566758a8f7227bfbf93a408a9d86bcc12a0"},
{file = "PyYAML-6.0.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8d4e9c88387b0f5c7d5f281e55304de64cf7f9c0021a3525bd3b1c542da3b0e4"}, {file = "PyYAML-6.0.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8d4e9c88387b0f5c7d5f281e55304de64cf7f9c0021a3525bd3b1c542da3b0e4"},
{file = "PyYAML-6.0.1-cp312-cp312-win32.whl", hash = "sha256:d483d2cdf104e7c9fa60c544d92981f12ad66a457afae824d146093b8c294c54"}, {file = "PyYAML-6.0.1-cp312-cp312-win32.whl", hash = "sha256:d483d2cdf104e7c9fa60c544d92981f12ad66a457afae824d146093b8c294c54"},
@ -3572,4 +3632,4 @@ testing = ["coverage (>=5.0.3)", "zope.event", "zope.testing"]
[metadata] [metadata]
lock-version = "2.0" lock-version = "2.0"
python-versions = ">=3.10,<3.12" python-versions = ">=3.10,<3.12"
content-hash = "db51ad1e631b569e106927683a13124252bd80974def1f2edbe23ac87d89c461" content-hash = "a44e079d565fc1166458690ca2dc5826e198cc07ccab0ebaf71b5ab5e0eed150"

View file

@ -23,6 +23,7 @@ orjson = ">=3.9.5"
gunicorn = ">=21.1.0" gunicorn = ">=21.1.0"
huggingface-hub = ">=0.20.1,<1.0" huggingface-hub = ">=0.20.1,<1.0"
tokenizers = ">=0.15.0,<1.0" tokenizers = ">=0.15.0,<1.0"
numba = "^0.59.1"
[tool.poetry.group.dev.dependencies] [tool.poetry.group.dev.dependencies]
mypy = ">=1.3.0" mypy = ">=1.3.0"