1
0
Fork 0
mirror of https://github.com/immich-app/immich.git synced 2025-01-01 08:31:59 +00:00

chore(ml): load models on start up (#2487)

* chore(ml): load models on start up

* Download correct model
This commit is contained in:
Alex 2023-05-19 22:37:01 -05:00 committed by GitHub
parent 89edbcacfa
commit 84cfa38510
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23

View file

@ -5,7 +5,7 @@ import uvicorn
from insightface.app import FaceAnalysis from insightface.app import FaceAnalysis
from transformers import pipeline from transformers import pipeline
from sentence_transformers import SentenceTransformer, util from sentence_transformers import SentenceTransformer
from PIL import Image from PIL import Image
from fastapi import FastAPI from fastapi import FastAPI
from pydantic import BaseModel from pydantic import BaseModel
@ -20,22 +20,32 @@ class ClipRequestBody(BaseModel):
classification_model = os.getenv( classification_model = os.getenv(
'MACHINE_LEARNING_CLASSIFICATION_MODEL', 'microsoft/resnet-50') "MACHINE_LEARNING_CLASSIFICATION_MODEL", "microsoft/resnet-50"
object_model = os.getenv('MACHINE_LEARNING_OBJECT_MODEL', 'hustvl/yolos-tiny') )
clip_image_model = os.getenv( object_model = os.getenv("MACHINE_LEARNING_OBJECT_MODEL", "hustvl/yolos-tiny")
'MACHINE_LEARNING_CLIP_IMAGE_MODEL', 'clip-ViT-B-32') clip_image_model = os.getenv("MACHINE_LEARNING_CLIP_IMAGE_MODEL", "clip-ViT-B-32")
clip_text_model = os.getenv( clip_text_model = os.getenv("MACHINE_LEARNING_CLIP_TEXT_MODEL", "clip-ViT-B-32")
'MACHINE_LEARNING_CLIP_TEXT_MODEL', 'clip-ViT-B-32')
facial_recognition_model = os.getenv( facial_recognition_model = os.getenv(
'MACHINE_LEARNING_FACIAL_RECOGNITION_MODEL', 'buffalo_l') "MACHINE_LEARNING_FACIAL_RECOGNITION_MODEL", "buffalo_l"
)
cache_folder = os.getenv('MACHINE_LEARNING_CACHE_FOLDER', '/cache') cache_folder = os.getenv("MACHINE_LEARNING_CACHE_FOLDER", "/cache")
_model_cache = {} _model_cache = {}
app = FastAPI() app = FastAPI()
@app.on_event("startup")
async def startup_event():
# Get all models
_get_model(object_model, "object-detection")
_get_model(classification_model, "image-classification")
_get_model(clip_image_model)
_get_model(clip_text_model)
_get_model(facial_recognition_model, "facial-recognition")
@app.get("/") @app.get("/")
async def root(): async def root():
return {"message": "Immich ML"} return {"message": "Immich ML"}
@ -48,14 +58,14 @@ def ping():
@app.post("/object-detection/detect-object", status_code=200) @app.post("/object-detection/detect-object", status_code=200)
def object_detection(payload: MlRequestBody): def object_detection(payload: MlRequestBody):
model = _get_model(object_model, 'object-detection') model = _get_model(object_model, "object-detection")
assetPath = payload.thumbnailPath assetPath = payload.thumbnailPath
return run_engine(model, assetPath) return run_engine(model, assetPath)
@app.post("/image-classifier/tag-image", status_code=200) @app.post("/image-classifier/tag-image", status_code=200)
def image_classification(payload: MlRequestBody): def image_classification(payload: MlRequestBody):
model = _get_model(classification_model, 'image-classification') model = _get_model(classification_model, "image-classification")
assetPath = payload.thumbnailPath assetPath = payload.thumbnailPath
return run_engine(model, assetPath) return run_engine(model, assetPath)
@ -76,31 +86,32 @@ def clip_encode_text(payload: ClipRequestBody):
@app.post("/facial-recognition/detect-faces", status_code=200) @app.post("/facial-recognition/detect-faces", status_code=200)
def facial_recognition(payload: MlRequestBody): def facial_recognition(payload: MlRequestBody):
model = _get_model(facial_recognition_model, 'facial-recognition') model = _get_model(facial_recognition_model, "facial-recognition")
assetPath = payload.thumbnailPath assetPath = payload.thumbnailPath
img = cv.imread(assetPath) img = cv.imread(assetPath)
height, width, _ = img.shape height, width, _ = img.shape
results = [] results = []
faces = model.get(img) faces = model.get(img)
for face in faces: for face in faces:
if face.det_score < 0.7: if face.det_score < 0.7:
continue continue
x1, y1, x2, y2 = face.bbox x1, y1, x2, y2 = face.bbox
# min face size as percent of original image
# if (x2 - x1) / width < 0.03 or (y2 - y1) / height < 0.05: results.append(
# continue {
results.append({ "imageWidth": width,
"imageWidth": width, "imageHeight": height,
"imageHeight": height, "boundingBox": {
"boundingBox": { "x1": round(x1),
"x1": round(x1), "y1": round(y1),
"y1": round(y1), "x2": round(x2),
"x2": round(x2), "y2": round(y2),
"y2": round(y2), },
}, "score": face.det_score.item(),
"score": face.det_score.item(), "embedding": face.normed_embedding.tolist(),
"embedding": face.normed_embedding.tolist() }
}) )
return results return results
@ -109,11 +120,11 @@ def run_engine(engine, path):
predictions = engine(path) predictions = engine(path)
for index, pred in enumerate(predictions): for index, pred in enumerate(predictions):
tags = pred['label'].split(', ') tags = pred["label"].split(", ")
if (pred['score'] > 0.9): if pred["score"] > 0.9:
result = [*result, *tags] result = [*result, *tags]
if (len(result) > 1): if len(result) > 1:
result = list(set(result)) result = list(set(result))
return result return result
@ -121,25 +132,27 @@ def run_engine(engine, path):
def _get_model(model, task=None): def _get_model(model, task=None):
global _model_cache global _model_cache
key = '|'.join([model, str(task)]) key = "|".join([model, str(task)])
if key not in _model_cache: if key not in _model_cache:
if task: if task:
if task == 'facial-recognition': if task == "facial-recognition":
face_model = FaceAnalysis( face_model = FaceAnalysis(
name=model, root=cache_folder, allowed_modules=["detection", "recognition"]) name=model,
root=cache_folder,
allowed_modules=["detection", "recognition"],
)
face_model.prepare(ctx_id=0, det_size=(640, 640)) face_model.prepare(ctx_id=0, det_size=(640, 640))
_model_cache[key] = face_model _model_cache[key] = face_model
else: else:
_model_cache[key] = pipeline(model=model, task=task) _model_cache[key] = pipeline(model=model, task=task)
else: else:
_model_cache[key] = SentenceTransformer( _model_cache[key] = SentenceTransformer(model, cache_folder=cache_folder)
model, cache_folder=cache_folder)
return _model_cache[key] return _model_cache[key]
if __name__ == "__main__": if __name__ == "__main__":
host = os.getenv('MACHINE_LEARNING_HOST', '0.0.0.0') host = os.getenv("MACHINE_LEARNING_HOST", "0.0.0.0")
port = int(os.getenv('MACHINE_LEARNING_PORT', 3003)) port = int(os.getenv("MACHINE_LEARNING_PORT", 3003))
is_dev = os.getenv('NODE_ENV') == 'development' is_dev = os.getenv("NODE_ENV") == "development"
uvicorn.run("main:app", host=host, port=port, reload=is_dev, workers=1) uvicorn.run("main:app", host=host, port=port, reload=is_dev, workers=1)