mirror of
https://github.com/immich-app/immich.git
synced 2025-01-28 06:32:44 +01:00
chore(ml): move to fastAPI (#2336)
This commit is contained in:
parent
6631b286c1
commit
7e965cb6d4
3 changed files with 73 additions and 70 deletions
machine-learning
|
@ -1,14 +1,15 @@
|
|||
FROM python:3.10 as builder
|
||||
|
||||
ENV PYTHONDONTWRITEBYTECODE=1 \
|
||||
PYTHONUNBUFFERED=1 \
|
||||
PIP_NO_CACHE_DIR=true
|
||||
PYTHONUNBUFFERED=1 \
|
||||
PIP_NO_CACHE_DIR=true
|
||||
|
||||
RUN python -m venv /opt/venv
|
||||
RUN /opt/venv/bin/pip install --pre torch -f https://download.pytorch.org/whl/nightly/cpu/torch_nightly.html
|
||||
RUN /opt/venv/bin/pip install transformers tqdm numpy scikit-learn scipy nltk sentencepiece flask Pillow gunicorn
|
||||
RUN /opt/venv/bin/pip install transformers tqdm numpy scikit-learn scipy nltk sentencepiece fastapi Pillow uvicorn[standard]
|
||||
RUN /opt/venv/bin/pip install --no-deps sentence-transformers
|
||||
|
||||
|
||||
FROM python:3.10-slim
|
||||
|
||||
ENV NODE_ENV=production
|
||||
|
@ -16,12 +17,12 @@ ENV NODE_ENV=production
|
|||
COPY --from=builder /opt/venv /opt/venv
|
||||
|
||||
ENV TRANSFORMERS_CACHE=/cache \
|
||||
PYTHONDONTWRITEBYTECODE=1 \
|
||||
PYTHONUNBUFFERED=1 \
|
||||
PATH="/opt/venv/bin:$PATH"
|
||||
PYTHONDONTWRITEBYTECODE=1 \
|
||||
PYTHONUNBUFFERED=1 \
|
||||
PATH="/opt/venv/bin:$PATH"
|
||||
|
||||
WORKDIR /usr/src/app
|
||||
|
||||
COPY . .
|
||||
|
||||
CMD ["gunicorn", "src.main:server"]
|
||||
ENV PYTHONPATH=`pwd`
|
||||
CMD ["python", "main.py"]
|
|
@ -1,29 +0,0 @@
|
|||
"""
|
||||
Gunicorn configuration options.
|
||||
https://docs.gunicorn.org/en/stable/settings.html
|
||||
"""
|
||||
import os
|
||||
|
||||
|
||||
# Set the bind address based on the env
|
||||
port = os.getenv("MACHINE_LEARNING_PORT") or "3003"
|
||||
listen_ip = os.getenv("MACHINE_LEARNING_IP") or "0.0.0.0"
|
||||
bind = [f"{listen_ip}:{port}"]
|
||||
|
||||
# Preload the Flask app / models etc. before starting the server
|
||||
preload_app = True
|
||||
|
||||
# Logging settings - log to stdout and set log level
|
||||
accesslog = "-"
|
||||
loglevel = os.getenv("MACHINE_LEARNING_LOG_LEVEL") or "info"
|
||||
|
||||
# Worker settings
|
||||
# ----------------------
|
||||
# It is important these are chosen carefully as per
|
||||
# https://pythonspeed.com/articles/gunicorn-in-docker/
|
||||
# Otherwise we get workers failing to respond to heartbeat checks,
|
||||
# especially as requests take a long time to complete.
|
||||
workers = 2
|
||||
threads = 4
|
||||
worker_tmp_dir = "/dev/shm"
|
||||
timeout = 60
|
|
@ -1,58 +1,77 @@
|
|||
import os
|
||||
from flask import Flask, request
|
||||
from transformers import pipeline
|
||||
from sentence_transformers import SentenceTransformer, util
|
||||
from PIL import Image
|
||||
from fastapi import FastAPI
|
||||
import uvicorn
|
||||
import os
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class MlRequestBody(BaseModel):
|
||||
thumbnailPath: str
|
||||
|
||||
|
||||
class ClipRequestBody(BaseModel):
|
||||
text: str
|
||||
|
||||
|
||||
is_dev = os.getenv('NODE_ENV') == 'development'
|
||||
server_port = os.getenv('MACHINE_LEARNING_PORT', 3003)
|
||||
server_host = os.getenv('MACHINE_LEARNING_HOST', '0.0.0.0')
|
||||
|
||||
classification_model = os.getenv('MACHINE_LEARNING_CLASSIFICATION_MODEL', 'microsoft/resnet-50')
|
||||
app = FastAPI()
|
||||
|
||||
"""
|
||||
Model Initialization
|
||||
"""
|
||||
classification_model = os.getenv(
|
||||
'MACHINE_LEARNING_CLASSIFICATION_MODEL', 'microsoft/resnet-50')
|
||||
object_model = os.getenv('MACHINE_LEARNING_OBJECT_MODEL', 'hustvl/yolos-tiny')
|
||||
clip_image_model = os.getenv('MACHINE_LEARNING_CLIP_IMAGE_MODEL', 'clip-ViT-B-32')
|
||||
clip_text_model = os.getenv('MACHINE_LEARNING_CLIP_TEXT_MODEL', 'clip-ViT-B-32')
|
||||
clip_image_model = os.getenv(
|
||||
'MACHINE_LEARNING_CLIP_IMAGE_MODEL', 'clip-ViT-B-32')
|
||||
clip_text_model = os.getenv(
|
||||
'MACHINE_LEARNING_CLIP_TEXT_MODEL', 'clip-ViT-B-32')
|
||||
|
||||
_model_cache = {}
|
||||
def _get_model(model, task=None):
|
||||
global _model_cache
|
||||
key = '|'.join([model, str(task)])
|
||||
if key not in _model_cache:
|
||||
if task:
|
||||
_model_cache[key] = pipeline(model=model, task=task)
|
||||
else:
|
||||
_model_cache[key] = SentenceTransformer(model)
|
||||
return _model_cache[key]
|
||||
|
||||
server = Flask(__name__)
|
||||
|
||||
@server.route("/ping")
|
||||
@app.get("/")
|
||||
async def root():
|
||||
return {"message": "Immich ML"}
|
||||
|
||||
|
||||
@app.get("/ping")
|
||||
def ping():
|
||||
return "pong"
|
||||
|
||||
@server.route("/object-detection/detect-object", methods=['POST'])
|
||||
def object_detection():
|
||||
|
||||
@app.post("/object-detection/detect-object", status_code=200)
|
||||
def object_detection(payload: MlRequestBody):
|
||||
model = _get_model(object_model, 'object-detection')
|
||||
assetPath = request.json['thumbnailPath']
|
||||
return run_engine(model, assetPath), 200
|
||||
assetPath = payload.thumbnailPath
|
||||
return run_engine(model, assetPath)
|
||||
|
||||
@server.route("/image-classifier/tag-image", methods=['POST'])
|
||||
def image_classification():
|
||||
|
||||
@app.post("/image-classifier/tag-image", status_code=200)
|
||||
def image_classification(payload: MlRequestBody):
|
||||
model = _get_model(classification_model, 'image-classification')
|
||||
assetPath = request.json['thumbnailPath']
|
||||
return run_engine(model, assetPath), 200
|
||||
assetPath = payload.thumbnailPath
|
||||
return run_engine(model, assetPath)
|
||||
|
||||
@server.route("/sentence-transformer/encode-image", methods=['POST'])
|
||||
def clip_encode_image():
|
||||
|
||||
@app.post("/sentence-transformer/encode-image", status_code=200)
|
||||
def clip_encode_image(payload: MlRequestBody):
|
||||
model = _get_model(clip_image_model)
|
||||
assetPath = request.json['thumbnailPath']
|
||||
return model.encode(Image.open(assetPath)).tolist(), 200
|
||||
assetPath = payload.thumbnailPath
|
||||
return model.encode(Image.open(assetPath)).tolist()
|
||||
|
||||
@server.route("/sentence-transformer/encode-text", methods=['POST'])
|
||||
def clip_encode_text():
|
||||
|
||||
@app.post("/sentence-transformer/encode-text", status_code=200)
|
||||
def clip_encode_text(payload: ClipRequestBody):
|
||||
model = _get_model(clip_text_model)
|
||||
text = request.json['text']
|
||||
return model.encode(text).tolist(), 200
|
||||
text = payload.text
|
||||
return model.encode(text).tolist()
|
||||
|
||||
|
||||
def run_engine(engine, path):
|
||||
result = []
|
||||
|
@ -69,5 +88,17 @@ def run_engine(engine, path):
|
|||
return result
|
||||
|
||||
|
||||
def _get_model(model, task=None):
|
||||
global _model_cache
|
||||
key = '|'.join([model, str(task)])
|
||||
if key not in _model_cache:
|
||||
if task:
|
||||
_model_cache[key] = pipeline(model=model, task=task)
|
||||
else:
|
||||
_model_cache[key] = SentenceTransformer(model)
|
||||
return _model_cache[key]
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
server.run(debug=is_dev, host=server_host, port=server_port)
|
||||
uvicorn.run("main:app", host=server_host,
|
||||
port=int(server_port), reload=is_dev, workers=1)
|
||||
|
|
Loading…
Reference in a new issue