mirror of
https://github.com/immich-app/immich.git
synced 2025-01-16 16:56:46 +01:00
fix(ml): clear model cache on load error (#2951)
* clear model cache on load error * updated caught exceptions
This commit is contained in:
parent
39a885a37c
commit
47982641b2
4 changed files with 38 additions and 19 deletions
|
@ -2,8 +2,11 @@ from __future__ import annotations
|
|||
|
||||
from abc import ABC, abstractmethod
|
||||
from pathlib import Path
|
||||
from shutil import rmtree
|
||||
from typing import Any
|
||||
|
||||
from onnxruntime.capi.onnxruntime_pybind11_state import InvalidProtobuf
|
||||
|
||||
from ..config import get_cache_dir
|
||||
from ..schemas import ModelType
|
||||
|
||||
|
@ -12,10 +15,8 @@ class InferenceModel(ABC):
|
|||
_model_type: ModelType
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_name: str,
|
||||
cache_dir: Path | None = None,
|
||||
):
|
||||
self, model_name: str, cache_dir: Path | None = None, **model_kwargs
|
||||
) -> None:
|
||||
self.model_name = model_name
|
||||
self._cache_dir = (
|
||||
cache_dir
|
||||
|
@ -23,6 +24,16 @@ class InferenceModel(ABC):
|
|||
else get_cache_dir(model_name, self.model_type)
|
||||
)
|
||||
|
||||
try:
|
||||
self.load(**model_kwargs)
|
||||
except (OSError, InvalidProtobuf):
|
||||
self.clear_cache()
|
||||
self.load(**model_kwargs)
|
||||
|
||||
@abstractmethod
|
||||
def load(self, **model_kwargs: Any) -> None:
|
||||
...
|
||||
|
||||
@abstractmethod
|
||||
def predict(self, inputs: Any) -> Any:
|
||||
...
|
||||
|
@ -36,7 +47,7 @@ class InferenceModel(ABC):
|
|||
return self._cache_dir
|
||||
|
||||
@cache_dir.setter
|
||||
def cache_dir(self, cache_dir: Path):
|
||||
def cache_dir(self, cache_dir: Path) -> None:
|
||||
self._cache_dir = cache_dir
|
||||
|
||||
@classmethod
|
||||
|
@ -50,3 +61,13 @@ class InferenceModel(ABC):
|
|||
raise ValueError(f"Unsupported model type: {model_type}")
|
||||
|
||||
return subclasses[model_type](model_name, **model_kwargs)
|
||||
|
||||
def clear_cache(self) -> None:
|
||||
if not self.cache_dir.exists():
|
||||
return
|
||||
elif not rmtree.avoids_symlink_attacks:
|
||||
raise RuntimeError(
|
||||
"Attempted to clear cache, but rmtree is not safe on this platform."
|
||||
)
|
||||
|
||||
rmtree(self.cache_dir)
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
from PIL.Image import Image
|
||||
from sentence_transformers import SentenceTransformer
|
||||
|
@ -10,13 +11,7 @@ from .base import InferenceModel
|
|||
class CLIPSTEncoder(InferenceModel):
|
||||
_model_type = ModelType.CLIP
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_name: str,
|
||||
cache_dir: Path | None = None,
|
||||
**model_kwargs,
|
||||
):
|
||||
super().__init__(model_name, cache_dir)
|
||||
def load(self, **model_kwargs: Any) -> None:
|
||||
self.model = SentenceTransformer(
|
||||
self.model_name,
|
||||
cache_folder=self.cache_dir.as_posix(),
|
||||
|
|
|
@ -18,21 +18,22 @@ class FaceRecognizer(InferenceModel):
|
|||
min_score: float = settings.min_face_score,
|
||||
cache_dir: Path | None = None,
|
||||
**model_kwargs,
|
||||
):
|
||||
super().__init__(model_name, cache_dir)
|
||||
) -> None:
|
||||
self.min_score = min_score
|
||||
model = FaceAnalysis(
|
||||
super().__init__(model_name, cache_dir, **model_kwargs)
|
||||
|
||||
def load(self, **model_kwargs: Any) -> None:
|
||||
self.model = FaceAnalysis(
|
||||
name=self.model_name,
|
||||
root=self.cache_dir.as_posix(),
|
||||
allowed_modules=["detection", "recognition"],
|
||||
**model_kwargs,
|
||||
)
|
||||
model.prepare(
|
||||
self.model.prepare(
|
||||
ctx_id=0,
|
||||
det_thresh=self.min_score,
|
||||
det_size=(640, 640),
|
||||
)
|
||||
self.model = model
|
||||
|
||||
def predict(self, image: cv2.Mat) -> list[dict[str, Any]]:
|
||||
height, width, _ = image.shape
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
from PIL.Image import Image
|
||||
from transformers.pipelines import pipeline
|
||||
|
@ -17,10 +18,11 @@ class ImageClassifier(InferenceModel):
|
|||
min_score: float = settings.min_tag_score,
|
||||
cache_dir: Path | None = None,
|
||||
**model_kwargs,
|
||||
):
|
||||
super().__init__(model_name, cache_dir)
|
||||
) -> None:
|
||||
self.min_score = min_score
|
||||
super().__init__(model_name, cache_dir, **model_kwargs)
|
||||
|
||||
def load(self, **model_kwargs: Any) -> None:
|
||||
self.model = pipeline(
|
||||
self.model_type.value,
|
||||
self.model_name,
|
||||
|
|
Loading…
Reference in a new issue