1
0
Fork 0
mirror of https://github.com/immich-app/immich.git synced 2025-01-16 16:56:46 +01:00

fix(ml): clear model cache on load error (#2951)

* clear model cache on load error

* updated caught exceptions
This commit is contained in:
Mert 2023-06-27 17:01:24 -04:00 committed by GitHub
parent 39a885a37c
commit 47982641b2
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
4 changed files with 38 additions and 19 deletions

View file

@ -2,8 +2,11 @@ from __future__ import annotations
from abc import ABC, abstractmethod
from pathlib import Path
from shutil import rmtree
from typing import Any
from onnxruntime.capi.onnxruntime_pybind11_state import InvalidProtobuf
from ..config import get_cache_dir
from ..schemas import ModelType
@ -12,10 +15,8 @@ class InferenceModel(ABC):
_model_type: ModelType
def __init__(
self,
model_name: str,
cache_dir: Path | None = None,
):
self, model_name: str, cache_dir: Path | None = None, **model_kwargs
) -> None:
self.model_name = model_name
self._cache_dir = (
cache_dir
@ -23,6 +24,16 @@ class InferenceModel(ABC):
else get_cache_dir(model_name, self.model_type)
)
try:
self.load(**model_kwargs)
except (OSError, InvalidProtobuf):
self.clear_cache()
self.load(**model_kwargs)
@abstractmethod
def load(self, **model_kwargs: Any) -> None:
...
@abstractmethod
def predict(self, inputs: Any) -> Any:
...
@ -36,7 +47,7 @@ class InferenceModel(ABC):
return self._cache_dir
@cache_dir.setter
def cache_dir(self, cache_dir: Path):
def cache_dir(self, cache_dir: Path) -> None:
self._cache_dir = cache_dir
@classmethod
@ -50,3 +61,13 @@ class InferenceModel(ABC):
raise ValueError(f"Unsupported model type: {model_type}")
return subclasses[model_type](model_name, **model_kwargs)
def clear_cache(self) -> None:
if not self.cache_dir.exists():
return
elif not rmtree.avoids_symlink_attacks:
raise RuntimeError(
"Attempted to clear cache, but rmtree is not safe on this platform."
)
rmtree(self.cache_dir)

View file

@ -1,4 +1,5 @@
from pathlib import Path
from typing import Any
from PIL.Image import Image
from sentence_transformers import SentenceTransformer
@ -10,13 +11,7 @@ from .base import InferenceModel
class CLIPSTEncoder(InferenceModel):
_model_type = ModelType.CLIP
def __init__(
self,
model_name: str,
cache_dir: Path | None = None,
**model_kwargs,
):
super().__init__(model_name, cache_dir)
def load(self, **model_kwargs: Any) -> None:
self.model = SentenceTransformer(
self.model_name,
cache_folder=self.cache_dir.as_posix(),

View file

@ -18,21 +18,22 @@ class FaceRecognizer(InferenceModel):
min_score: float = settings.min_face_score,
cache_dir: Path | None = None,
**model_kwargs,
):
super().__init__(model_name, cache_dir)
) -> None:
self.min_score = min_score
model = FaceAnalysis(
super().__init__(model_name, cache_dir, **model_kwargs)
def load(self, **model_kwargs: Any) -> None:
self.model = FaceAnalysis(
name=self.model_name,
root=self.cache_dir.as_posix(),
allowed_modules=["detection", "recognition"],
**model_kwargs,
)
model.prepare(
self.model.prepare(
ctx_id=0,
det_thresh=self.min_score,
det_size=(640, 640),
)
self.model = model
def predict(self, image: cv2.Mat) -> list[dict[str, Any]]:
height, width, _ = image.shape

View file

@ -1,4 +1,5 @@
from pathlib import Path
from typing import Any
from PIL.Image import Image
from transformers.pipelines import pipeline
@ -17,10 +18,11 @@ class ImageClassifier(InferenceModel):
min_score: float = settings.min_tag_score,
cache_dir: Path | None = None,
**model_kwargs,
):
super().__init__(model_name, cache_dir)
) -> None:
self.min_score = min_score
super().__init__(model_name, cache_dir, **model_kwargs)
def load(self, **model_kwargs: Any) -> None:
self.model = pipeline(
self.model_type.value,
self.model_name,