mirror of
https://github.com/immich-app/immich.git
synced 2025-01-01 08:31:59 +00:00
fix(ml): clear model cache on load error (#2951)
* clear model cache on load error * updated caught exceptions
This commit is contained in:
parent
39a885a37c
commit
47982641b2
4 changed files with 38 additions and 19 deletions
|
@ -2,8 +2,11 @@ from __future__ import annotations
|
||||||
|
|
||||||
from abc import ABC, abstractmethod
|
from abc import ABC, abstractmethod
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
from shutil import rmtree
|
||||||
from typing import Any
|
from typing import Any
|
||||||
|
|
||||||
|
from onnxruntime.capi.onnxruntime_pybind11_state import InvalidProtobuf
|
||||||
|
|
||||||
from ..config import get_cache_dir
|
from ..config import get_cache_dir
|
||||||
from ..schemas import ModelType
|
from ..schemas import ModelType
|
||||||
|
|
||||||
|
@ -12,10 +15,8 @@ class InferenceModel(ABC):
|
||||||
_model_type: ModelType
|
_model_type: ModelType
|
||||||
|
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self, model_name: str, cache_dir: Path | None = None, **model_kwargs
|
||||||
model_name: str,
|
) -> None:
|
||||||
cache_dir: Path | None = None,
|
|
||||||
):
|
|
||||||
self.model_name = model_name
|
self.model_name = model_name
|
||||||
self._cache_dir = (
|
self._cache_dir = (
|
||||||
cache_dir
|
cache_dir
|
||||||
|
@ -23,6 +24,16 @@ class InferenceModel(ABC):
|
||||||
else get_cache_dir(model_name, self.model_type)
|
else get_cache_dir(model_name, self.model_type)
|
||||||
)
|
)
|
||||||
|
|
||||||
|
try:
|
||||||
|
self.load(**model_kwargs)
|
||||||
|
except (OSError, InvalidProtobuf):
|
||||||
|
self.clear_cache()
|
||||||
|
self.load(**model_kwargs)
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
def load(self, **model_kwargs: Any) -> None:
|
||||||
|
...
|
||||||
|
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
def predict(self, inputs: Any) -> Any:
|
def predict(self, inputs: Any) -> Any:
|
||||||
...
|
...
|
||||||
|
@ -36,7 +47,7 @@ class InferenceModel(ABC):
|
||||||
return self._cache_dir
|
return self._cache_dir
|
||||||
|
|
||||||
@cache_dir.setter
|
@cache_dir.setter
|
||||||
def cache_dir(self, cache_dir: Path):
|
def cache_dir(self, cache_dir: Path) -> None:
|
||||||
self._cache_dir = cache_dir
|
self._cache_dir = cache_dir
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
|
@ -50,3 +61,13 @@ class InferenceModel(ABC):
|
||||||
raise ValueError(f"Unsupported model type: {model_type}")
|
raise ValueError(f"Unsupported model type: {model_type}")
|
||||||
|
|
||||||
return subclasses[model_type](model_name, **model_kwargs)
|
return subclasses[model_type](model_name, **model_kwargs)
|
||||||
|
|
||||||
|
def clear_cache(self) -> None:
|
||||||
|
if not self.cache_dir.exists():
|
||||||
|
return
|
||||||
|
elif not rmtree.avoids_symlink_attacks:
|
||||||
|
raise RuntimeError(
|
||||||
|
"Attempted to clear cache, but rmtree is not safe on this platform."
|
||||||
|
)
|
||||||
|
|
||||||
|
rmtree(self.cache_dir)
|
||||||
|
|
|
@ -1,4 +1,5 @@
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
from typing import Any
|
||||||
|
|
||||||
from PIL.Image import Image
|
from PIL.Image import Image
|
||||||
from sentence_transformers import SentenceTransformer
|
from sentence_transformers import SentenceTransformer
|
||||||
|
@ -10,13 +11,7 @@ from .base import InferenceModel
|
||||||
class CLIPSTEncoder(InferenceModel):
|
class CLIPSTEncoder(InferenceModel):
|
||||||
_model_type = ModelType.CLIP
|
_model_type = ModelType.CLIP
|
||||||
|
|
||||||
def __init__(
|
def load(self, **model_kwargs: Any) -> None:
|
||||||
self,
|
|
||||||
model_name: str,
|
|
||||||
cache_dir: Path | None = None,
|
|
||||||
**model_kwargs,
|
|
||||||
):
|
|
||||||
super().__init__(model_name, cache_dir)
|
|
||||||
self.model = SentenceTransformer(
|
self.model = SentenceTransformer(
|
||||||
self.model_name,
|
self.model_name,
|
||||||
cache_folder=self.cache_dir.as_posix(),
|
cache_folder=self.cache_dir.as_posix(),
|
||||||
|
|
|
@ -18,21 +18,22 @@ class FaceRecognizer(InferenceModel):
|
||||||
min_score: float = settings.min_face_score,
|
min_score: float = settings.min_face_score,
|
||||||
cache_dir: Path | None = None,
|
cache_dir: Path | None = None,
|
||||||
**model_kwargs,
|
**model_kwargs,
|
||||||
):
|
) -> None:
|
||||||
super().__init__(model_name, cache_dir)
|
|
||||||
self.min_score = min_score
|
self.min_score = min_score
|
||||||
model = FaceAnalysis(
|
super().__init__(model_name, cache_dir, **model_kwargs)
|
||||||
|
|
||||||
|
def load(self, **model_kwargs: Any) -> None:
|
||||||
|
self.model = FaceAnalysis(
|
||||||
name=self.model_name,
|
name=self.model_name,
|
||||||
root=self.cache_dir.as_posix(),
|
root=self.cache_dir.as_posix(),
|
||||||
allowed_modules=["detection", "recognition"],
|
allowed_modules=["detection", "recognition"],
|
||||||
**model_kwargs,
|
**model_kwargs,
|
||||||
)
|
)
|
||||||
model.prepare(
|
self.model.prepare(
|
||||||
ctx_id=0,
|
ctx_id=0,
|
||||||
det_thresh=self.min_score,
|
det_thresh=self.min_score,
|
||||||
det_size=(640, 640),
|
det_size=(640, 640),
|
||||||
)
|
)
|
||||||
self.model = model
|
|
||||||
|
|
||||||
def predict(self, image: cv2.Mat) -> list[dict[str, Any]]:
|
def predict(self, image: cv2.Mat) -> list[dict[str, Any]]:
|
||||||
height, width, _ = image.shape
|
height, width, _ = image.shape
|
||||||
|
|
|
@ -1,4 +1,5 @@
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
from typing import Any
|
||||||
|
|
||||||
from PIL.Image import Image
|
from PIL.Image import Image
|
||||||
from transformers.pipelines import pipeline
|
from transformers.pipelines import pipeline
|
||||||
|
@ -17,10 +18,11 @@ class ImageClassifier(InferenceModel):
|
||||||
min_score: float = settings.min_tag_score,
|
min_score: float = settings.min_tag_score,
|
||||||
cache_dir: Path | None = None,
|
cache_dir: Path | None = None,
|
||||||
**model_kwargs,
|
**model_kwargs,
|
||||||
):
|
) -> None:
|
||||||
super().__init__(model_name, cache_dir)
|
|
||||||
self.min_score = min_score
|
self.min_score = min_score
|
||||||
|
super().__init__(model_name, cache_dir, **model_kwargs)
|
||||||
|
|
||||||
|
def load(self, **model_kwargs: Any) -> None:
|
||||||
self.model = pipeline(
|
self.model = pipeline(
|
||||||
self.model_type.value,
|
self.model_type.value,
|
||||||
self.model_name,
|
self.model_name,
|
||||||
|
|
Loading…
Reference in a new issue