diff --git a/machine-learning/Dockerfile b/machine-learning/Dockerfile index 103c8ba659..bd65975fb7 100644 --- a/machine-learning/Dockerfile +++ b/machine-learning/Dockerfile @@ -1,4 +1,4 @@ -FROM python:3.11.4-bullseye@sha256:5b401676aff858495a5c9c726c60b8b73fe52833e9e16eccdb59e93d52741727 as builder +FROM python:3.11-bookworm as builder ENV PYTHONDONTWRITEBYTECODE=1 \ PYTHONUNBUFFERED=1 \ @@ -14,9 +14,9 @@ COPY poetry.lock pyproject.toml requirements.txt ./ RUN poetry install --sync --no-interaction --no-ansi --no-root --only main RUN pip install --no-deps -r requirements.txt -FROM python:3.11.4-slim-bullseye@sha256:91d194f58f50594cda71dcd2e8fdefd90e7ecc57d07823813b67c8521e565dcd +FROM python:3.11-slim-bookworm -RUN apt-get update && apt-get install -y --no-install-recommends tini && rm -rf /var/lib/apt/lists/* +RUN apt-get update && apt-get install -y --no-install-recommends tini libmimalloc2.0 && rm -rf /var/lib/apt/lists/* WORKDIR /usr/src/app ENV NODE_ENV=production \ @@ -27,6 +27,7 @@ ENV NODE_ENV=production \ PYTHONPATH=/usr/src COPY --from=builder /opt/venv /opt/venv +COPY start.sh log_conf.json ./ COPY app . ENTRYPOINT ["tini", "--"] -CMD ["python", "-m", "app.main"] +CMD ["./start.sh"] diff --git a/machine-learning/app/config.py b/machine-learning/app/config.py index 744903483d..0cfaf7db7d 100644 --- a/machine-learning/app/config.py +++ b/machine-learning/app/config.py @@ -2,6 +2,7 @@ import logging import os from pathlib import Path +import gunicorn import starlette from pydantic import BaseSettings from rich.console import Console @@ -56,12 +57,14 @@ LOG_LEVELS: dict[str, int] = { settings = Settings() log_settings = LogSettings() -console = Console(color_system="standard", no_color=log_settings.no_color) -logging.basicConfig( - format="%(message)s", - handlers=[ - RichHandler(show_path=False, omit_repeated_times=False, console=console, tracebacks_suppress=[starlette]) - ], -) -log = logging.getLogger("uvicorn") + +class CustomRichHandler(RichHandler): + def __init__(self) -> None: + console = Console(color_system="standard", no_color=log_settings.no_color) + super().__init__( + show_path=False, omit_repeated_times=False, console=console, tracebacks_suppress=[gunicorn, starlette] + ) + + +log = logging.getLogger("gunicorn.access") log.setLevel(LOG_LEVELS.get(log_settings.log_level.lower(), logging.INFO)) diff --git a/machine-learning/app/main.py b/machine-learning/app/main.py index 9ea4768db6..9ad4680710 100644 --- a/machine-learning/app/main.py +++ b/machine-learning/app/main.py @@ -1,11 +1,8 @@ import asyncio -import logging -import os from concurrent.futures import ThreadPoolExecutor from typing import Any import orjson -import uvicorn from fastapi import FastAPI, Form, HTTPException, UploadFile from fastapi.responses import ORJSONResponse from starlette.formparsers import MultiPartParser @@ -33,7 +30,7 @@ def init_state() -> None: ) ) # asyncio is a huge bottleneck for performance, so we use a thread pool to run blocking code - app.state.thread_pool = ThreadPoolExecutor(settings.request_threads) + app.state.thread_pool = ThreadPoolExecutor(settings.request_threads) if settings.request_threads > 0 else None log.info(f"Initialized request thread pool with {settings.request_threads} threads.") @@ -73,17 +70,7 @@ async def predict( async def run(model: InferenceModel, inputs: Any) -> Any: - return await asyncio.get_running_loop().run_in_executor(app.state.thread_pool, model.predict, inputs) - - -if __name__ == "__main__": - is_dev = os.getenv("NODE_ENV") == "development" - uvicorn.run( - "app.main:app", - host=settings.host, - port=settings.port, - reload=is_dev, - workers=settings.workers, - log_config=None, - access_log=log.isEnabledFor(logging.INFO), - ) + if app.state.thread_pool is not None: + return await asyncio.get_running_loop().run_in_executor(app.state.thread_pool, model.predict, inputs) + else: + return model.predict(inputs) diff --git a/machine-learning/app/models/base.py b/machine-learning/app/models/base.py index 801c2d222b..1207342582 100644 --- a/machine-learning/app/models/base.py +++ b/machine-learning/app/models/base.py @@ -53,6 +53,7 @@ class InferenceModel(ABC): log.debug(f"Setting intra_op_num_threads to {intra_op_num_threads}") self.sess_options.inter_op_num_threads = inter_op_num_threads self.sess_options.intra_op_num_threads = intra_op_num_threads + self.sess_options.enable_cpu_mem_arena = False try: loader(**model_kwargs) diff --git a/machine-learning/log_conf.json b/machine-learning/log_conf.json new file mode 100644 index 0000000000..f94fe4309e --- /dev/null +++ b/machine-learning/log_conf.json @@ -0,0 +1,17 @@ +{ + "version": 1, + "disable_existing_loggers": true, + "formatters": { "rich": { "show_path": false, "omit_repeated_times": false } }, + "handlers": { + "console": { + "class": "app.config.CustomRichHandler", + "formatter": "rich", + "level": "INFO" + } + }, + "loggers": { + "gunicorn.access": { "propagate": true }, + "gunicorn.error": { "propagate": true } + }, + "root": { "handlers": ["console"] } +} diff --git a/machine-learning/poetry.lock b/machine-learning/poetry.lock index 1a617a38cd..528ac70469 100644 --- a/machine-learning/poetry.lock +++ b/machine-learning/poetry.lock @@ -164,13 +164,13 @@ tests = ["pytest"] [[package]] name = "anyio" -version = "3.7.1" +version = "4.0.0" description = "High level compatibility layer for multiple asynchronous event loop implementations" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "anyio-3.7.1-py3-none-any.whl", hash = "sha256:91dee416e570e92c64041bd18b900d1d6fa78dff7048769ce5ac5ddad004fbb5"}, - {file = "anyio-3.7.1.tar.gz", hash = "sha256:44a3c9aba0f5defa43261a8b3efb97891f2bd7d804e0e1f56419befa1adfc780"}, + {file = "anyio-4.0.0-py3-none-any.whl", hash = "sha256:cfdb2b588b9fc25ede96d8db56ed50848b0b649dca3dd1df0b11f683bb9e0b5f"}, + {file = "anyio-4.0.0.tar.gz", hash = "sha256:f7ed51751b2c2add651e5747c891b47e26d2a21be5d32d9311dfe9692f3e5d7a"}, ] [package.dependencies] @@ -178,9 +178,9 @@ idna = ">=2.8" sniffio = ">=1.1" [package.extras] -doc = ["Sphinx", "packaging", "sphinx-autodoc-typehints (>=1.2.0)", "sphinx-rtd-theme (>=1.2.2)", "sphinxcontrib-jquery"] -test = ["anyio[trio]", "coverage[toml] (>=4.5)", "hypothesis (>=4.0)", "mock (>=4)", "psutil (>=5.9)", "pytest (>=7.0)", "pytest-mock (>=3.6.1)", "trustme", "uvloop (>=0.17)"] -trio = ["trio (<0.22)"] +doc = ["Sphinx (>=7)", "packaging", "sphinx-autodoc-typehints (>=1.2.0)"] +test = ["anyio[trio]", "coverage[toml] (>=7)", "hypothesis (>=4.0)", "psutil (>=5.9)", "pytest (>=7.0)", "pytest-mock (>=3.6.1)", "trustme", "uvloop (>=0.17)"] +trio = ["trio (>=0.22)"] [[package]] name = "async-timeout" @@ -874,18 +874,18 @@ test = ["anyio[trio] (>=3.2.1,<4.0.0)", "black (==23.1.0)", "coverage[toml] (>=6 [[package]] name = "filelock" -version = "3.12.2" +version = "3.12.3" description = "A platform independent file lock." optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "filelock-3.12.2-py3-none-any.whl", hash = "sha256:cbb791cdea2a72f23da6ac5b5269ab0a0d161e9ef0100e653b69049a7706d1ec"}, - {file = "filelock-3.12.2.tar.gz", hash = "sha256:002740518d8aa59a26b0c76e10fb8c6e15eae825d34b6fdf670333fd7b938d81"}, + {file = "filelock-3.12.3-py3-none-any.whl", hash = "sha256:f067e40ccc40f2b48395a80fcbd4728262fab54e232e090a4063ab804179efeb"}, + {file = "filelock-3.12.3.tar.gz", hash = "sha256:0ecc1dd2ec4672a10c8550a8182f1bd0c0a5088470ecd5a125e45f49472fac3d"}, ] [package.extras] -docs = ["furo (>=2023.5.20)", "sphinx (>=7.0.1)", "sphinx-autodoc-typehints (>=1.23,!=1.23.4)"] -testing = ["covdefaults (>=2.3)", "coverage (>=7.2.7)", "diff-cover (>=7.5)", "pytest (>=7.3.1)", "pytest-cov (>=4.1)", "pytest-mock (>=3.10)", "pytest-timeout (>=2.1)"] +docs = ["furo (>=2023.7.26)", "sphinx (>=7.1.2)", "sphinx-autodoc-typehints (>=1.24)"] +testing = ["covdefaults (>=2.3)", "coverage (>=7.3)", "diff-cover (>=7.7)", "pytest (>=7.4)", "pytest-cov (>=4.1)", "pytest-mock (>=3.11.1)", "pytest-timeout (>=2.1)"] [[package]] name = "flask" @@ -1453,17 +1453,17 @@ test = ["objgraph", "psutil"] [[package]] name = "gunicorn" -version = "20.1.0" +version = "21.2.0" description = "WSGI HTTP Server for UNIX" optional = false python-versions = ">=3.5" files = [ - {file = "gunicorn-20.1.0-py3-none-any.whl", hash = "sha256:9dcc4547dbb1cb284accfb15ab5667a0e5d1881cc443e0677b4882a4067a807e"}, - {file = "gunicorn-20.1.0.tar.gz", hash = "sha256:e0a968b5ba15f8a328fdfd7ab1fcb5af4470c28aaf7e55df02a99bc13138e6e8"}, + {file = "gunicorn-21.2.0-py3-none-any.whl", hash = "sha256:3213aa5e8c24949e792bcacfc176fef362e7aac80b76c56f6b5122bf350722f0"}, + {file = "gunicorn-21.2.0.tar.gz", hash = "sha256:88ec8bff1d634f98e61b9f65bc4bf3cd918a90806c6f5c48bc5603849ec81033"}, ] [package.dependencies] -setuptools = ">=3.0" +packaging = "*" [package.extras] eventlet = ["eventlet (>=0.24.1)"] @@ -2619,69 +2619,61 @@ files = [ [[package]] name = "pandas" -version = "2.0.3" +version = "2.1.0" description = "Powerful data structures for data analysis, time series, and statistics" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "pandas-2.0.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e4c7c9f27a4185304c7caf96dc7d91bc60bc162221152de697c98eb0b2648dd8"}, - {file = "pandas-2.0.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:f167beed68918d62bffb6ec64f2e1d8a7d297a038f86d4aed056b9493fca407f"}, - {file = "pandas-2.0.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ce0c6f76a0f1ba361551f3e6dceaff06bde7514a374aa43e33b588ec10420183"}, - {file = "pandas-2.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba619e410a21d8c387a1ea6e8a0e49bb42216474436245718d7f2e88a2f8d7c0"}, - {file = "pandas-2.0.3-cp310-cp310-win32.whl", hash = "sha256:3ef285093b4fe5058eefd756100a367f27029913760773c8bf1d2d8bebe5d210"}, - {file = "pandas-2.0.3-cp310-cp310-win_amd64.whl", hash = "sha256:9ee1a69328d5c36c98d8e74db06f4ad518a1840e8ccb94a4ba86920986bb617e"}, - {file = "pandas-2.0.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b084b91d8d66ab19f5bb3256cbd5ea661848338301940e17f4492b2ce0801fe8"}, - {file = "pandas-2.0.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:37673e3bdf1551b95bf5d4ce372b37770f9529743d2498032439371fc7b7eb26"}, - {file = "pandas-2.0.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b9cb1e14fdb546396b7e1b923ffaeeac24e4cedd14266c3497216dd4448e4f2d"}, - {file = "pandas-2.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d9cd88488cceb7635aebb84809d087468eb33551097d600c6dad13602029c2df"}, - {file = "pandas-2.0.3-cp311-cp311-win32.whl", hash = "sha256:694888a81198786f0e164ee3a581df7d505024fbb1f15202fc7db88a71d84ebd"}, - {file = "pandas-2.0.3-cp311-cp311-win_amd64.whl", hash = "sha256:6a21ab5c89dcbd57f78d0ae16630b090eec626360085a4148693def5452d8a6b"}, - {file = "pandas-2.0.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:9e4da0d45e7f34c069fe4d522359df7d23badf83abc1d1cef398895822d11061"}, - {file = "pandas-2.0.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:32fca2ee1b0d93dd71d979726b12b61faa06aeb93cf77468776287f41ff8fdc5"}, - {file = "pandas-2.0.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:258d3624b3ae734490e4d63c430256e716f488c4fcb7c8e9bde2d3aa46c29089"}, - {file = "pandas-2.0.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9eae3dc34fa1aa7772dd3fc60270d13ced7346fcbcfee017d3132ec625e23bb0"}, - {file = "pandas-2.0.3-cp38-cp38-win32.whl", hash = "sha256:f3421a7afb1a43f7e38e82e844e2bca9a6d793d66c1a7f9f0ff39a795bbc5e02"}, - {file = "pandas-2.0.3-cp38-cp38-win_amd64.whl", hash = "sha256:69d7f3884c95da3a31ef82b7618af5710dba95bb885ffab339aad925c3e8ce78"}, - {file = "pandas-2.0.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5247fb1ba347c1261cbbf0fcfba4a3121fbb4029d95d9ef4dc45406620b25c8b"}, - {file = "pandas-2.0.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:81af086f4543c9d8bb128328b5d32e9986e0c84d3ee673a2ac6fb57fd14f755e"}, - {file = "pandas-2.0.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1994c789bf12a7c5098277fb43836ce090f1073858c10f9220998ac74f37c69b"}, - {file = "pandas-2.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5ec591c48e29226bcbb316e0c1e9423622bc7a4eaf1ef7c3c9fa1a3981f89641"}, - {file = "pandas-2.0.3-cp39-cp39-win32.whl", hash = "sha256:04dbdbaf2e4d46ca8da896e1805bc04eb85caa9a82e259e8eed00254d5e0c682"}, - {file = "pandas-2.0.3-cp39-cp39-win_amd64.whl", hash = "sha256:1168574b036cd8b93abc746171c9b4f1b83467438a5e45909fed645cf8692dbc"}, - {file = "pandas-2.0.3.tar.gz", hash = "sha256:c02f372a88e0d17f36d3093a644c73cfc1788e876a7c4bcb4020a77512e2043c"}, + {file = "pandas-2.1.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:40dd20439ff94f1b2ed55b393ecee9cb6f3b08104c2c40b0cb7186a2f0046242"}, + {file = "pandas-2.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:d4f38e4fedeba580285eaac7ede4f686c6701a9e618d8a857b138a126d067f2f"}, + {file = "pandas-2.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6e6a0fe052cf27ceb29be9429428b4918f3740e37ff185658f40d8702f0b3e09"}, + {file = "pandas-2.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9d81e1813191070440d4c7a413cb673052b3b4a984ffd86b8dd468c45742d3cc"}, + {file = "pandas-2.1.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:eb20252720b1cc1b7d0b2879ffc7e0542dd568f24d7c4b2347cb035206936421"}, + {file = "pandas-2.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:38f74ef7ebc0ffb43b3d633e23d74882bce7e27bfa09607f3c5d3e03ffd9a4a5"}, + {file = "pandas-2.1.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:cda72cc8c4761c8f1d97b169661f23a86b16fdb240bdc341173aee17e4d6cedd"}, + {file = "pandas-2.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:d97daeac0db8c993420b10da4f5f5b39b01fc9ca689a17844e07c0a35ac96b4b"}, + {file = "pandas-2.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d8c58b1113892e0c8078f006a167cc210a92bdae23322bb4614f2f0b7a4b510f"}, + {file = "pandas-2.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:629124923bcf798965b054a540f9ccdfd60f71361255c81fa1ecd94a904b9dd3"}, + {file = "pandas-2.1.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:70cf866af3ab346a10debba8ea78077cf3a8cd14bd5e4bed3d41555a3280041c"}, + {file = "pandas-2.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:d53c8c1001f6a192ff1de1efe03b31a423d0eee2e9e855e69d004308e046e694"}, + {file = "pandas-2.1.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:86f100b3876b8c6d1a2c66207288ead435dc71041ee4aea789e55ef0e06408cb"}, + {file = "pandas-2.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:28f330845ad21c11db51e02d8d69acc9035edfd1116926ff7245c7215db57957"}, + {file = "pandas-2.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b9a6ccf0963db88f9b12df6720e55f337447aea217f426a22d71f4213a3099a6"}, + {file = "pandas-2.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d99e678180bc59b0c9443314297bddce4ad35727a1a2656dbe585fd78710b3b9"}, + {file = "pandas-2.1.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:b31da36d376d50a1a492efb18097b9101bdbd8b3fbb3f49006e02d4495d4c644"}, + {file = "pandas-2.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:0164b85937707ec7f70b34a6c3a578dbf0f50787f910f21ca3b26a7fd3363437"}, + {file = "pandas-2.1.0.tar.gz", hash = "sha256:62c24c7fc59e42b775ce0679cfa7b14a5f9bfb7643cfbe708c960699e05fb918"}, ] [package.dependencies] -numpy = [ - {version = ">=1.21.0", markers = "python_version >= \"3.10\""}, - {version = ">=1.23.2", markers = "python_version >= \"3.11\""}, -] +numpy = {version = ">=1.23.2", markers = "python_version >= \"3.11\""} python-dateutil = ">=2.8.2" pytz = ">=2020.1" tzdata = ">=2022.1" [package.extras] -all = ["PyQt5 (>=5.15.1)", "SQLAlchemy (>=1.4.16)", "beautifulsoup4 (>=4.9.3)", "bottleneck (>=1.3.2)", "brotlipy (>=0.7.0)", "fastparquet (>=0.6.3)", "fsspec (>=2021.07.0)", "gcsfs (>=2021.07.0)", "html5lib (>=1.1)", "hypothesis (>=6.34.2)", "jinja2 (>=3.0.0)", "lxml (>=4.6.3)", "matplotlib (>=3.6.1)", "numba (>=0.53.1)", "numexpr (>=2.7.3)", "odfpy (>=1.4.1)", "openpyxl (>=3.0.7)", "pandas-gbq (>=0.15.0)", "psycopg2 (>=2.8.6)", "pyarrow (>=7.0.0)", "pymysql (>=1.0.2)", "pyreadstat (>=1.1.2)", "pytest (>=7.3.2)", "pytest-asyncio (>=0.17.0)", "pytest-xdist (>=2.2.0)", "python-snappy (>=0.6.0)", "pyxlsb (>=1.0.8)", "qtpy (>=2.2.0)", "s3fs (>=2021.08.0)", "scipy (>=1.7.1)", "tables (>=3.6.1)", "tabulate (>=0.8.9)", "xarray (>=0.21.0)", "xlrd (>=2.0.1)", "xlsxwriter (>=1.4.3)", "zstandard (>=0.15.2)"] -aws = ["s3fs (>=2021.08.0)"] -clipboard = ["PyQt5 (>=5.15.1)", "qtpy (>=2.2.0)"] -compression = ["brotlipy (>=0.7.0)", "python-snappy (>=0.6.0)", "zstandard (>=0.15.2)"] -computation = ["scipy (>=1.7.1)", "xarray (>=0.21.0)"] -excel = ["odfpy (>=1.4.1)", "openpyxl (>=3.0.7)", "pyxlsb (>=1.0.8)", "xlrd (>=2.0.1)", "xlsxwriter (>=1.4.3)"] +all = ["PyQt5 (>=5.15.6)", "SQLAlchemy (>=1.4.36)", "beautifulsoup4 (>=4.11.1)", "bottleneck (>=1.3.4)", "dataframe-api-compat (>=0.1.7)", "fastparquet (>=0.8.1)", "fsspec (>=2022.05.0)", "gcsfs (>=2022.05.0)", "html5lib (>=1.1)", "hypothesis (>=6.46.1)", "jinja2 (>=3.1.2)", "lxml (>=4.8.0)", "matplotlib (>=3.6.1)", "numba (>=0.55.2)", "numexpr (>=2.8.0)", "odfpy (>=1.4.1)", "openpyxl (>=3.0.10)", "pandas-gbq (>=0.17.5)", "psycopg2 (>=2.9.3)", "pyarrow (>=7.0.0)", "pymysql (>=1.0.2)", "pyreadstat (>=1.1.5)", "pytest (>=7.3.2)", "pytest-asyncio (>=0.17.0)", "pytest-xdist (>=2.2.0)", "pyxlsb (>=1.0.9)", "qtpy (>=2.2.0)", "s3fs (>=2022.05.0)", "scipy (>=1.8.1)", "tables (>=3.7.0)", "tabulate (>=0.8.10)", "xarray (>=2022.03.0)", "xlrd (>=2.0.1)", "xlsxwriter (>=3.0.3)", "zstandard (>=0.17.0)"] +aws = ["s3fs (>=2022.05.0)"] +clipboard = ["PyQt5 (>=5.15.6)", "qtpy (>=2.2.0)"] +compression = ["zstandard (>=0.17.0)"] +computation = ["scipy (>=1.8.1)", "xarray (>=2022.03.0)"] +consortium-standard = ["dataframe-api-compat (>=0.1.7)"] +excel = ["odfpy (>=1.4.1)", "openpyxl (>=3.0.10)", "pyxlsb (>=1.0.9)", "xlrd (>=2.0.1)", "xlsxwriter (>=3.0.3)"] feather = ["pyarrow (>=7.0.0)"] -fss = ["fsspec (>=2021.07.0)"] -gcp = ["gcsfs (>=2021.07.0)", "pandas-gbq (>=0.15.0)"] -hdf5 = ["tables (>=3.6.1)"] -html = ["beautifulsoup4 (>=4.9.3)", "html5lib (>=1.1)", "lxml (>=4.6.3)"] -mysql = ["SQLAlchemy (>=1.4.16)", "pymysql (>=1.0.2)"] -output-formatting = ["jinja2 (>=3.0.0)", "tabulate (>=0.8.9)"] +fss = ["fsspec (>=2022.05.0)"] +gcp = ["gcsfs (>=2022.05.0)", "pandas-gbq (>=0.17.5)"] +hdf5 = ["tables (>=3.7.0)"] +html = ["beautifulsoup4 (>=4.11.1)", "html5lib (>=1.1)", "lxml (>=4.8.0)"] +mysql = ["SQLAlchemy (>=1.4.36)", "pymysql (>=1.0.2)"] +output-formatting = ["jinja2 (>=3.1.2)", "tabulate (>=0.8.10)"] parquet = ["pyarrow (>=7.0.0)"] -performance = ["bottleneck (>=1.3.2)", "numba (>=0.53.1)", "numexpr (>=2.7.1)"] +performance = ["bottleneck (>=1.3.4)", "numba (>=0.55.2)", "numexpr (>=2.8.0)"] plot = ["matplotlib (>=3.6.1)"] -postgresql = ["SQLAlchemy (>=1.4.16)", "psycopg2 (>=2.8.6)"] -spss = ["pyreadstat (>=1.1.2)"] -sql-other = ["SQLAlchemy (>=1.4.16)"] -test = ["hypothesis (>=6.34.2)", "pytest (>=7.3.2)", "pytest-asyncio (>=0.17.0)", "pytest-xdist (>=2.2.0)"] -xml = ["lxml (>=4.6.3)"] +postgresql = ["SQLAlchemy (>=1.4.36)", "psycopg2 (>=2.9.3)"] +spss = ["pyreadstat (>=1.1.5)"] +sql-other = ["SQLAlchemy (>=1.4.36)"] +test = ["hypothesis (>=6.46.1)", "pytest (>=7.3.2)", "pytest-asyncio (>=0.17.0)", "pytest-xdist (>=2.2.0)"] +xml = ["lxml (>=4.8.0)"] [[package]] name = "pathspec" @@ -3877,13 +3869,13 @@ files = [ [[package]] name = "tifffile" -version = "2023.8.25" +version = "2023.8.30" description = "Read and write TIFF files" optional = false python-versions = ">=3.9" files = [ - {file = "tifffile-2023.8.25-py3-none-any.whl", hash = "sha256:40318485b59e9acb62e7139f22bd46e6760f92daea562b79900bfce3ee2613b7"}, - {file = "tifffile-2023.8.25.tar.gz", hash = "sha256:0a3ebcdfe71eb61a487dd22eaf21ed8962c511e6eb692153c7ac15f81798dfa4"}, + {file = "tifffile-2023.8.30-py3-none-any.whl", hash = "sha256:62364eef35a6fdcc7bc2ad6f97dd270f577efb01b31260ff800af76a66c1e145"}, + {file = "tifffile-2023.8.30.tar.gz", hash = "sha256:6a8c53b012a286b75d09a1498ab32f202f24cc6270a105b5d5911dc4426f162a"}, ] [package.dependencies] @@ -3894,13 +3886,13 @@ all = ["defusedxml", "fsspec", "imagecodecs (>=2023.8.12)", "lxml", "matplotlib" [[package]] name = "timm" -version = "0.9.5" +version = "0.9.6" description = "PyTorch Image Models" optional = false python-versions = ">=3.7" files = [ - {file = "timm-0.9.5-py3-none-any.whl", hash = "sha256:6e70af3a347bddb4167db46c3252a83c59165332ecf6b3df480d49c22866fa46"}, - {file = "timm-0.9.5.tar.gz", hash = "sha256:669835f0030cfb2412c464b7b563bb240d4d41a141226afbbf1b457e4f18cff1"}, + {file = "timm-0.9.6-py3-none-any.whl", hash = "sha256:7549a924b86a6151d4083a880c27ae86ce729e1b5c8c6099657217d0a0526a4e"}, + {file = "timm-0.9.6.tar.gz", hash = "sha256:6c3c0451b69431de0290eed5662e66b134caf916f1cb9b4aa3b9a13c3d61fd03"}, ] [package.dependencies] @@ -4126,13 +4118,13 @@ telegram = ["requests"] [[package]] name = "transformers" -version = "4.32.0" +version = "4.32.1" description = "State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow" optional = false python-versions = ">=3.8.0" files = [ - {file = "transformers-4.32.0-py3-none-any.whl", hash = "sha256:32d8adf0ed76285508e7fd66657b4448ec1f882599ae6bf6f9c36bd7bf798402"}, - {file = "transformers-4.32.0.tar.gz", hash = "sha256:ca510f9688d2fe7347abbbfbd13f2f6dcd3c8349870c8d0ed98beed5f579b354"}, + {file = "transformers-4.32.1-py3-none-any.whl", hash = "sha256:b930d3dbd907a3f300cf49e54d63a56f8a0ab16b01a2c2a61ecff37c6de1da08"}, + {file = "transformers-4.32.1.tar.gz", hash = "sha256:1edc8ae1de357d97c3d36b04412aa63d55e6fc0c4b39b419a7d380ed947d2252"}, ] [package.dependencies] @@ -4693,4 +4685,4 @@ testing = ["coverage (>=5.0.3)", "zope.event", "zope.testing"] [metadata] lock-version = "2.0" python-versions = "^3.11" -content-hash = "6d200d3ea1ccf9fb89f44043e3e0845e70f19aac374b96227559375f44508dc5" +content-hash = "4e97a32e7525cfedbf23892b8c1191b3fe7b4d09b9f043cdb285ed9772862d67" diff --git a/machine-learning/pyproject.toml b/machine-learning/pyproject.toml index abea406f41..63681d9fd3 100644 --- a/machine-learning/pyproject.toml +++ b/machine-learning/pyproject.toml @@ -33,13 +33,13 @@ open-clip-torch = "^2.20.0" python-multipart = "^0.0.6" orjson = "^3.9.5" safetensors = "0.3.2" +gunicorn = "^21.1.0" [tool.poetry.group.dev.dependencies] mypy = "^1.3.0" black = "^23.3.0" pytest = "^7.3.1" locust = "^2.15.1" -gunicorn = "^20.1.0" httpx = "^0.24.1" pytest-asyncio = "^0.21.0" pytest-cov = "^4.1.0" @@ -74,6 +74,7 @@ warn_untyped_fields = true module = [ "huggingface_hub", "transformers", + "gunicorn", "cv2", "insightface.model_zoo", "insightface.utils.face_align", diff --git a/machine-learning/start.sh b/machine-learning/start.sh new file mode 100755 index 0000000000..b6b7616519 --- /dev/null +++ b/machine-learning/start.sh @@ -0,0 +1,13 @@ +#!/usr/bin/env sh + +export LD_PRELOAD="/usr/lib/$(arch)-linux-gnu/libmimalloc.so.2" + +: "${MACHINE_LEARNING_HOST:=0.0.0.0}" +: "${MACHINE_LEARNING_PORT:=3003}" +: "${MACHINE_LEARNING_WORKERS:=1}" + +gunicorn app.main:app \ + -k uvicorn.workers.UvicornWorker \ + -w $MACHINE_LEARNING_WORKERS \ + -b $MACHINE_LEARNING_HOST:$MACHINE_LEARNING_PORT \ + --log-config-json log_conf.json \ No newline at end of file