1
0
Fork 0
mirror of https://github.com/immich-app/immich.git synced 2025-01-27 22:22:45 +01:00

feat(ml): add face models ()

added models to config dropdown

fixed downloading

updated tests

use hf for face models

formatting
This commit is contained in:
Mert 2023-11-11 20:04:49 -05:00 committed by GitHub
parent 7fca0d8da5
commit 328a58ac0d
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
8 changed files with 101 additions and 94 deletions
machine-learning/app
web/src/lib/components/admin-page/settings/machine-learning-settings

View file

@ -38,8 +38,16 @@ class LogSettings(BaseSettings):
_clean_name = str.maketrans(":\\/", "___", ".") _clean_name = str.maketrans(":\\/", "___", ".")
def clean_name(model_name: str) -> str:
return model_name.split("/")[-1].translate(_clean_name)
def get_cache_dir(model_name: str, model_type: ModelType) -> Path: def get_cache_dir(model_name: str, model_type: ModelType) -> Path:
return Path(settings.cache_folder) / model_type.value / model_name.translate(_clean_name) return Path(settings.cache_folder) / model_type.value / clean_name(model_name)
def get_hf_model_name(model_name: str) -> str:
return f"immich-app/{clean_name(model_name)}"
LOG_LEVELS: dict[str, int] = { LOG_LEVELS: dict[str, int] = {

View file

@ -3,7 +3,8 @@ from typing import Any
from app.schemas import ModelType from app.schemas import ModelType
from .base import InferenceModel from .base import InferenceModel
from .clip import MCLIPEncoder, OpenCLIPEncoder, is_mclip, is_openclip from .clip import MCLIPEncoder, OpenCLIPEncoder
from .constants import is_insightface, is_mclip, is_openclip
from .facial_recognition import FaceRecognizer from .facial_recognition import FaceRecognizer
from .image_classification import ImageClassifier from .image_classification import ImageClassifier
@ -15,11 +16,12 @@ def from_model_type(model_type: ModelType, model_name: str, **model_kwargs: Any)
return OpenCLIPEncoder(model_name, **model_kwargs) return OpenCLIPEncoder(model_name, **model_kwargs)
elif is_mclip(model_name): elif is_mclip(model_name):
return MCLIPEncoder(model_name, **model_kwargs) return MCLIPEncoder(model_name, **model_kwargs)
else:
raise ValueError(f"Unknown CLIP model {model_name}")
case ModelType.FACIAL_RECOGNITION: case ModelType.FACIAL_RECOGNITION:
return FaceRecognizer(model_name, **model_kwargs) if is_insightface(model_name):
return FaceRecognizer(model_name, **model_kwargs)
case ModelType.IMAGE_CLASSIFICATION: case ModelType.IMAGE_CLASSIFICATION:
return ImageClassifier(model_name, **model_kwargs) return ImageClassifier(model_name, **model_kwargs)
case _: case _:
raise ValueError(f"Unknown model type {model_type}") raise ValueError(f"Unknown model type {model_type}")
raise ValueError(f"Unknown ${model_type} model {model_name}")

View file

@ -7,8 +7,9 @@ from shutil import rmtree
from typing import Any from typing import Any
import onnxruntime as ort import onnxruntime as ort
from huggingface_hub import snapshot_download
from ..config import get_cache_dir, log, settings from ..config import get_cache_dir, get_hf_model_name, log, settings
from ..schemas import ModelType from ..schemas import ModelType
@ -78,9 +79,13 @@ class InferenceModel(ABC):
def configure(self, **model_kwargs: Any) -> None: def configure(self, **model_kwargs: Any) -> None:
pass pass
@abstractmethod
def _download(self) -> None: def _download(self) -> None:
... snapshot_download(
get_hf_model_name(self.model_name),
cache_dir=self.cache_dir,
local_dir=self.cache_dir,
local_dir_use_symlinks=False,
)
@abstractmethod @abstractmethod
def _load(self) -> None: def _load(self) -> None:

View file

@ -7,11 +7,10 @@ from typing import Any, Literal
import numpy as np import numpy as np
import onnxruntime as ort import onnxruntime as ort
from huggingface_hub import snapshot_download
from PIL import Image from PIL import Image
from transformers import AutoTokenizer from transformers import AutoTokenizer
from app.config import log from app.config import clean_name, log
from app.models.transforms import crop, get_pil_resampling, normalize, resize, to_numpy from app.models.transforms import crop, get_pil_resampling, normalize, resize, to_numpy
from app.schemas import ModelType, ndarray_f32, ndarray_i32, ndarray_i64 from app.schemas import ModelType, ndarray_f32, ndarray_i32, ndarray_i64
@ -117,15 +116,7 @@ class OpenCLIPEncoder(BaseCLIPEncoder):
mode: Literal["text", "vision"] | None = None, mode: Literal["text", "vision"] | None = None,
**model_kwargs: Any, **model_kwargs: Any,
) -> None: ) -> None:
super().__init__(_clean_model_name(model_name), cache_dir, mode, **model_kwargs) super().__init__(clean_name(model_name), cache_dir, mode, **model_kwargs)
def _download(self) -> None:
snapshot_download(
f"immich-app/{self.model_name}",
cache_dir=self.cache_dir,
local_dir=self.cache_dir,
local_dir_use_symlinks=False,
)
def _load(self) -> None: def _load(self) -> None:
super()._load() super()._load()
@ -171,52 +162,3 @@ class MCLIPEncoder(OpenCLIPEncoder):
def tokenize(self, text: str) -> dict[str, ndarray_i32]: def tokenize(self, text: str) -> dict[str, ndarray_i32]:
tokens: dict[str, ndarray_i64] = self.tokenizer(text, return_tensors="np") tokens: dict[str, ndarray_i64] = self.tokenizer(text, return_tensors="np")
return {k: v.astype(np.int32) for k, v in tokens.items()} return {k: v.astype(np.int32) for k, v in tokens.items()}
_OPENCLIP_MODELS = {
"RN50__openai",
"RN50__yfcc15m",
"RN50__cc12m",
"RN101__openai",
"RN101__yfcc15m",
"RN50x4__openai",
"RN50x16__openai",
"RN50x64__openai",
"ViT-B-32__openai",
"ViT-B-32__laion2b_e16",
"ViT-B-32__laion400m_e31",
"ViT-B-32__laion400m_e32",
"ViT-B-32__laion2b-s34b-b79k",
"ViT-B-16__openai",
"ViT-B-16__laion400m_e31",
"ViT-B-16__laion400m_e32",
"ViT-B-16-plus-240__laion400m_e31",
"ViT-B-16-plus-240__laion400m_e32",
"ViT-L-14__openai",
"ViT-L-14__laion400m_e31",
"ViT-L-14__laion400m_e32",
"ViT-L-14__laion2b-s32b-b82k",
"ViT-L-14-336__openai",
"ViT-H-14__laion2b-s32b-b79k",
"ViT-g-14__laion2b-s12b-b42k",
}
_MCLIP_MODELS = {
"LABSE-Vit-L-14",
"XLM-Roberta-Large-Vit-B-32",
"XLM-Roberta-Large-Vit-B-16Plus",
"XLM-Roberta-Large-Vit-L-14",
}
def _clean_model_name(model_name: str) -> str:
return model_name.split("/")[-1].replace("::", "__")
def is_openclip(model_name: str) -> bool:
return _clean_model_name(model_name) in _OPENCLIP_MODELS
def is_mclip(model_name: str) -> bool:
return _clean_model_name(model_name) in _MCLIP_MODELS

View file

@ -0,0 +1,57 @@
from app.config import clean_name
_OPENCLIP_MODELS = {
"RN50__openai",
"RN50__yfcc15m",
"RN50__cc12m",
"RN101__openai",
"RN101__yfcc15m",
"RN50x4__openai",
"RN50x16__openai",
"RN50x64__openai",
"ViT-B-32__openai",
"ViT-B-32__laion2b_e16",
"ViT-B-32__laion400m_e31",
"ViT-B-32__laion400m_e32",
"ViT-B-32__laion2b-s34b-b79k",
"ViT-B-16__openai",
"ViT-B-16__laion400m_e31",
"ViT-B-16__laion400m_e32",
"ViT-B-16-plus-240__laion400m_e31",
"ViT-B-16-plus-240__laion400m_e32",
"ViT-L-14__openai",
"ViT-L-14__laion400m_e31",
"ViT-L-14__laion400m_e32",
"ViT-L-14__laion2b-s32b-b82k",
"ViT-L-14-336__openai",
"ViT-H-14__laion2b-s32b-b79k",
"ViT-g-14__laion2b-s12b-b42k",
}
_MCLIP_MODELS = {
"LABSE-Vit-L-14",
"XLM-Roberta-Large-Vit-B-32",
"XLM-Roberta-Large-Vit-B-16Plus",
"XLM-Roberta-Large-Vit-L-14",
}
_INSIGHTFACE_MODELS = {
"antelopev2",
"buffalo_l",
"buffalo_m",
"buffalo_s",
}
def is_openclip(model_name: str) -> bool:
return clean_name(model_name) in _OPENCLIP_MODELS
def is_mclip(model_name: str) -> bool:
return clean_name(model_name) in _MCLIP_MODELS
def is_insightface(model_name: str) -> bool:
return clean_name(model_name) in _INSIGHTFACE_MODELS

View file

@ -1,4 +1,3 @@
import zipfile
from pathlib import Path from pathlib import Path
from typing import Any from typing import Any
@ -7,8 +6,8 @@ import numpy as np
import onnxruntime as ort import onnxruntime as ort
from insightface.model_zoo import ArcFaceONNX, RetinaFace from insightface.model_zoo import ArcFaceONNX, RetinaFace
from insightface.utils.face_align import norm_crop from insightface.utils.face_align import norm_crop
from insightface.utils.storage import BASE_REPO_URL, download_file
from app.config import clean_name
from app.schemas import ModelType, ndarray_f32 from app.schemas import ModelType, ndarray_f32
from .base import InferenceModel from .base import InferenceModel
@ -25,37 +24,21 @@ class FaceRecognizer(InferenceModel):
**model_kwargs: Any, **model_kwargs: Any,
) -> None: ) -> None:
self.min_score = model_kwargs.pop("minScore", min_score) self.min_score = model_kwargs.pop("minScore", min_score)
super().__init__(model_name, cache_dir, **model_kwargs) super().__init__(clean_name(model_name), cache_dir, **model_kwargs)
def _download(self) -> None:
zip_file = self.cache_dir / f"{self.model_name}.zip"
download_file(f"{BASE_REPO_URL}/{self.model_name}.zip", zip_file)
with zipfile.ZipFile(zip_file, "r") as zip:
members = zip.namelist()
det_file = next(model for model in members if model.startswith("det_"))
rec_file = next(model for model in members if model.startswith("w600k_"))
zip.extractall(self.cache_dir, members=[det_file, rec_file])
zip_file.unlink()
def _load(self) -> None: def _load(self) -> None:
try:
det_file = next(self.cache_dir.glob("det_*.onnx"))
rec_file = next(self.cache_dir.glob("w600k_*.onnx"))
except StopIteration:
raise FileNotFoundError("Facial recognition models not found in cache directory")
self.det_model = RetinaFace( self.det_model = RetinaFace(
session=ort.InferenceSession( session=ort.InferenceSession(
det_file.as_posix(), self.det_file.as_posix(),
sess_options=self.sess_options, sess_options=self.sess_options,
providers=self.providers, providers=self.providers,
provider_options=self.provider_options, provider_options=self.provider_options,
), ),
) )
self.rec_model = ArcFaceONNX( self.rec_model = ArcFaceONNX(
rec_file.as_posix(), self.rec_file.as_posix(),
session=ort.InferenceSession( session=ort.InferenceSession(
rec_file.as_posix(), self.rec_file.as_posix(),
sess_options=self.sess_options, sess_options=self.sess_options,
providers=self.providers, providers=self.providers,
provider_options=self.provider_options, provider_options=self.provider_options,
@ -103,7 +86,15 @@ class FaceRecognizer(InferenceModel):
@property @property
def cached(self) -> bool: def cached(self) -> bool:
return self.cache_dir.is_dir() and any(self.cache_dir.glob("*.onnx")) return self.det_file.is_file() and self.rec_file.is_file()
@property
def det_file(self) -> Path:
return self.cache_dir / "detection" / "model.onnx"
@property
def rec_file(self) -> Path:
return self.cache_dir / "recognition" / "model.onnx"
def configure(self, **model_kwargs: Any) -> None: def configure(self, **model_kwargs: Any) -> None:
self.det_model.det_thresh = model_kwargs.pop("minScore", self.det_model.det_thresh) self.det_model.det_thresh = model_kwargs.pop("minScore", self.det_model.det_thresh)

View file

@ -106,13 +106,13 @@ class TestCLIP:
class TestFaceRecognition: class TestFaceRecognition:
def test_set_min_score(self, mocker: MockerFixture) -> None: def test_set_min_score(self, mocker: MockerFixture) -> None:
mocker.patch.object(FaceRecognizer, "load") mocker.patch.object(FaceRecognizer, "load")
face_recognizer = FaceRecognizer("test_model_name", cache_dir="test_cache", min_score=0.5) face_recognizer = FaceRecognizer("buffalo_s", cache_dir="test_cache", min_score=0.5)
assert face_recognizer.min_score == 0.5 assert face_recognizer.min_score == 0.5
def test_basic(self, cv_image: cv2.Mat, mocker: MockerFixture) -> None: def test_basic(self, cv_image: cv2.Mat, mocker: MockerFixture) -> None:
mocker.patch.object(FaceRecognizer, "load") mocker.patch.object(FaceRecognizer, "load")
face_recognizer = FaceRecognizer("test_model_name", min_score=0.0, cache_dir="test_cache") face_recognizer = FaceRecognizer("buffalo_s", min_score=0.0, cache_dir="test_cache")
det_model = mock.Mock() det_model = mock.Mock()
num_faces = 2 num_faces = 2

View file

@ -160,11 +160,13 @@
<SettingSelect <SettingSelect
label="FACIAL RECOGNITION MODEL" label="FACIAL RECOGNITION MODEL"
desc="Smaller models are faster and use less memory, but perform worse. Note that you must re-run the Recognize Faces job for all images upon changing a model." desc="Models are listed in descending order of size. Larger models are slower and use more memory, but produce better results. Note that you must re-run the Recognize Faces job for all images upon changing a model."
name="facial-recognition-model" name="facial-recognition-model"
bind:value={machineLearningConfig.facialRecognition.modelName} bind:value={machineLearningConfig.facialRecognition.modelName}
options={[ options={[
{ value: 'antelopev2', text: 'antelopev2' },
{ value: 'buffalo_l', text: 'buffalo_l' }, { value: 'buffalo_l', text: 'buffalo_l' },
{ value: 'buffalo_m', text: 'buffalo_m' },
{ value: 'buffalo_s', text: 'buffalo_s' }, { value: 'buffalo_s', text: 'buffalo_s' },
]} ]}
disabled={disabled || !machineLearningConfig.enabled || !machineLearningConfig.facialRecognition.enabled} disabled={disabled || !machineLearningConfig.enabled || !machineLearningConfig.facialRecognition.enabled}