mirror of
https://github.com/immich-app/immich.git
synced 2024-12-29 15:11:58 +00:00
refactor
This commit is contained in:
parent
7e587c2703
commit
259386cf13
3 changed files with 41 additions and 28 deletions
|
@ -7,6 +7,7 @@ from insightface.model_zoo import RetinaFace
|
|||
from numpy.typing import NDArray
|
||||
|
||||
from app.models.base import InferenceModel
|
||||
from app.models.session import ort_has_batch_dim, ort_squeeze_outputs
|
||||
from app.models.transforms import decode_cv2
|
||||
from app.schemas import FaceDetectionOutput, ModelSession, ModelTask, ModelType
|
||||
|
||||
|
@ -27,7 +28,8 @@ class FaceDetector(InferenceModel):
|
|||
|
||||
def _load(self) -> ModelSession:
|
||||
session = self._make_session(self.model_path)
|
||||
self._squeeze_outputs(session)
|
||||
if isinstance(session, ort.InferenceSession) and ort_has_batch_dim(session):
|
||||
ort_squeeze_outputs(session)
|
||||
self.model = RetinaFace(session=session)
|
||||
self.model.prepare(ctx_id=0, det_thresh=self.min_score, input_size=(640, 640))
|
||||
|
||||
|
@ -46,15 +48,5 @@ class FaceDetector(InferenceModel):
|
|||
def _detect(self, inputs: NDArray[np.uint8] | bytes) -> tuple[NDArray[np.float32], NDArray[np.float32]]:
|
||||
return self.model.detect(inputs) # type: ignore
|
||||
|
||||
def _squeeze_outputs(self, session: ort.InferenceSession) -> None:
|
||||
original_run = session.run
|
||||
|
||||
def run(output_names: list[str], input_feed: dict[str, NDArray[np.float32]]) -> list[NDArray[np.float32]]:
|
||||
out: list[NDArray[np.float32]] = original_run(output_names, input_feed)
|
||||
out = [o.squeeze(axis=0) for o in out]
|
||||
return out
|
||||
|
||||
session.run = run
|
||||
|
||||
def configure(self, **kwargs: Any) -> None:
|
||||
self.model.det_thresh = kwargs.pop("minScore", self.model.det_thresh)
|
||||
|
|
|
@ -2,16 +2,15 @@ from pathlib import Path
|
|||
from typing import Any
|
||||
|
||||
import numpy as np
|
||||
import onnx
|
||||
import onnxruntime as ort
|
||||
from insightface.model_zoo import ArcFaceONNX
|
||||
from insightface.utils.face_align import norm_crop
|
||||
from numpy.typing import NDArray
|
||||
from onnx.tools.update_model_dims import update_inputs_outputs_dims
|
||||
from PIL import Image
|
||||
|
||||
from app.config import clean_name, log
|
||||
from app.models.base import InferenceModel
|
||||
from app.models.session import ort_add_batch_dim, ort_has_batch_dim
|
||||
from app.models.transforms import decode_cv2
|
||||
from app.schemas import FaceDetectionOutput, FacialRecognitionOutput, ModelSession, ModelTask, ModelType
|
||||
|
||||
|
@ -32,8 +31,9 @@ class FaceRecognizer(InferenceModel):
|
|||
|
||||
def _load(self) -> ModelSession:
|
||||
session = self._make_session(self.model_path)
|
||||
if not self._has_batch_dim(session):
|
||||
self._add_batch_dim(self.model_path)
|
||||
if isinstance(session, ort.InferenceSession) and not ort_has_batch_dim(session):
|
||||
log.debug(f"Adding batch dimension to model {self.model_path}")
|
||||
ort_add_batch_dim(self.model_path, self.model_path)
|
||||
session = self._make_session(self.model_path)
|
||||
self.model = ArcFaceONNX(
|
||||
self.model_path.with_suffix(".onnx").as_posix(),
|
||||
|
@ -62,16 +62,3 @@ class FaceRecognizer(InferenceModel):
|
|||
|
||||
def _crop(self, image: NDArray[np.uint8], faces: FaceDetectionOutput) -> list[NDArray[np.uint8]]:
|
||||
return [norm_crop(image, landmark) for landmark in faces["landmarks"]]
|
||||
|
||||
def _has_batch_dim(self, session: ort.InferenceSession) -> bool:
|
||||
return not isinstance(session, ort.InferenceSession) or session.get_inputs()[0].shape[0] == "batch"
|
||||
|
||||
def _add_batch_dim(self, model_path: Path) -> None:
|
||||
log.debug(f"Adding batch dimension to model {model_path}")
|
||||
proto = onnx.load(model_path)
|
||||
static_input_dims = [shape.dim_value for shape in proto.graph.input[0].type.tensor_type.shape.dim[1:]]
|
||||
static_output_dims = [shape.dim_value for shape in proto.graph.output[0].type.tensor_type.shape.dim[1:]]
|
||||
input_dims = {proto.graph.input[0].name: ["batch"] + static_input_dims}
|
||||
output_dims = {proto.graph.output[0].name: ["batch"] + static_output_dims}
|
||||
updated_proto = update_inputs_outputs_dims(proto, input_dims, output_dims)
|
||||
onnx.save(updated_proto, model_path)
|
||||
|
|
|
@ -0,0 +1,34 @@
|
|||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
import onnx
|
||||
import onnxruntime as ort
|
||||
from numpy.typing import NDArray
|
||||
from onnx.shape_inference import infer_shapes
|
||||
from onnx.tools.update_model_dims import update_inputs_outputs_dims
|
||||
|
||||
|
||||
def ort_has_batch_dim(session: ort.InferenceSession) -> bool:
|
||||
return session.get_inputs()[0].shape[0] == "batch"
|
||||
|
||||
|
||||
def ort_squeeze_outputs(session: ort.InferenceSession) -> None:
|
||||
original_run = session.run
|
||||
|
||||
def run(output_names: list[str], input_feed: dict[str, NDArray[np.float32]]) -> list[NDArray[np.float32]]:
|
||||
out: list[NDArray[np.float32]] = original_run(output_names, input_feed)
|
||||
out = [o.squeeze(axis=0) for o in out]
|
||||
return out
|
||||
|
||||
session.run = run
|
||||
|
||||
|
||||
def ort_add_batch_dim(input_path: Path, output_path: Path) -> None:
|
||||
proto = onnx.load(input_path)
|
||||
static_input_dims = [shape.dim_value for shape in proto.graph.input[0].type.tensor_type.shape.dim[1:]]
|
||||
static_output_dims = [shape.dim_value for shape in proto.graph.output[0].type.tensor_type.shape.dim[1:]]
|
||||
input_dims = {proto.graph.input[0].name: ["batch"] + static_input_dims}
|
||||
output_dims = {proto.graph.output[0].name: ["batch"] + static_output_dims}
|
||||
updated_proto = update_inputs_outputs_dims(proto, input_dims, output_dims)
|
||||
inferred = infer_shapes(updated_proto)
|
||||
onnx.save(inferred, output_path)
|
Loading…
Reference in a new issue