1
0
Fork 0
mirror of https://github.com/immich-app/immich.git synced 2025-01-27 22:22:45 +01:00

fix(server): face search migration sometimes failing ()

* turn it off and back on

* handle missing smart search embedding column

* handle missing face embedding column

* simplify

* Revert "simplify"

This reverts commit 8322af0baf.

* fix migration
This commit is contained in:
Mert 2024-07-03 22:02:43 -04:00 committed by GitHub
parent 2b8942026c
commit 0b88bef157
No known key found for this signature in database
GPG key ID: B5690EEEBB952194

View file

@ -9,25 +9,50 @@ export class AddFaceSearchRelation1718486162779 implements MigrationInterface {
await queryRunner.query(`SET vectors.pgvector_compatibility=on`); await queryRunner.query(`SET vectors.pgvector_compatibility=on`);
} }
const hasEmbeddings = async (tableName: string): Promise<boolean> => {
const columns = await queryRunner.query(
`SELECT column_name as name
FROM information_schema.columns
WHERE table_name = '${tableName}'`);
return columns.some((column: { name: string }) => column.name === 'embedding');
}
const hasAssetEmbeddings = await hasEmbeddings('smart_search');
if (!hasAssetEmbeddings) {
await queryRunner.query(`TRUNCATE smart_search`);
await queryRunner.query(`ALTER TABLE smart_search ADD COLUMN IF NOT EXISTS embedding vector(512) NOT NULL`);
}
await queryRunner.query(` await queryRunner.query(`
CREATE TABLE face_search ( CREATE TABLE face_search (
"faceId" uuid PRIMARY KEY REFERENCES asset_faces(id) ON DELETE CASCADE, "faceId" uuid PRIMARY KEY REFERENCES asset_faces(id) ON DELETE CASCADE,
embedding vector(512) NOT NULL )`); embedding vector(512) NOT NULL )`);
await queryRunner.query(`ALTER TABLE face_search ALTER COLUMN embedding SET STORAGE EXTERNAL`); await queryRunner.query(`ALTER TABLE face_search ALTER COLUMN embedding SET STORAGE EXTERNAL`);
await queryRunner.query(`ALTER TABLE smart_search ALTER COLUMN embedding SET STORAGE EXTERNAL`); await queryRunner.query(`ALTER TABLE smart_search ALTER COLUMN embedding SET STORAGE EXTERNAL`);
await queryRunner.query(` const hasFaceEmbeddings = await hasEmbeddings('asset_faces')
INSERT INTO face_search("faceId", embedding) if (hasFaceEmbeddings) {
SELECT id, embedding await queryRunner.query(`
FROM asset_faces faces`); INSERT INTO face_search("faceId", embedding)
SELECT id, embedding
FROM asset_faces faces`);
}
await queryRunner.query(`ALTER TABLE asset_faces DROP COLUMN "embedding"`); await queryRunner.query(`ALTER TABLE asset_faces DROP COLUMN IF EXISTS embedding`);
await queryRunner.query(`ALTER TABLE face_search ALTER COLUMN embedding SET DATA TYPE real[]`);
await queryRunner.query(`ALTER TABLE face_search ALTER COLUMN embedding SET DATA TYPE vector(512)`);
await queryRunner.query(` await queryRunner.query(`
CREATE INDEX face_index ON face_search CREATE INDEX IF NOT EXISTS clip_index ON smart_search
USING hnsw (embedding vector_cosine_ops) USING hnsw (embedding vector_cosine_ops)
WITH (ef_construction = 300, m = 16)`); WITH (ef_construction = 300, m = 16)`);
await queryRunner.query(`
CREATE INDEX face_index ON face_search
USING hnsw (embedding vector_cosine_ops)
WITH (ef_construction = 300, m = 16)`);
} }
public async down(queryRunner: QueryRunner): Promise<void> { public async down(queryRunner: QueryRunner): Promise<void> {
@ -40,15 +65,15 @@ export class AddFaceSearchRelation1718486162779 implements MigrationInterface {
await queryRunner.query(`ALTER TABLE face_search ALTER COLUMN embedding SET STORAGE DEFAULT`); await queryRunner.query(`ALTER TABLE face_search ALTER COLUMN embedding SET STORAGE DEFAULT`);
await queryRunner.query(`ALTER TABLE smart_search ALTER COLUMN embedding SET STORAGE DEFAULT`); await queryRunner.query(`ALTER TABLE smart_search ALTER COLUMN embedding SET STORAGE DEFAULT`);
await queryRunner.query(` await queryRunner.query(`
UPDATE asset_faces UPDATE asset_faces
SET embedding = fs.embedding SET embedding = fs.embedding
FROM face_search fs FROM face_search fs
WHERE id = fs."faceId"`); WHERE id = fs."faceId"`);
await queryRunner.query(`DROP TABLE face_search`); await queryRunner.query(`DROP TABLE face_search`);
await queryRunner.query(` await queryRunner.query(`
CREATE INDEX face_index ON asset_faces CREATE INDEX face_index ON asset_faces
USING hnsw (embedding vector_cosine_ops) USING hnsw (embedding vector_cosine_ops)
WITH (ef_construction = 300, m = 16)`); WITH (ef_construction = 300, m = 16)`);
} }
} }