mirror of
https://github.com/immich-app/immich.git
synced 2025-01-04 02:46:47 +01:00
184 lines
7.2 KiB
Python
184 lines
7.2 KiB
Python
|
from io import BytesIO
|
||
|
from pathlib import Path
|
||
|
from unittest import mock
|
||
|
|
||
|
import cv2
|
||
|
import pytest
|
||
|
from fastapi.testclient import TestClient
|
||
|
from PIL import Image
|
||
|
|
||
|
from .config import settings
|
||
|
from .models.cache import ModelCache
|
||
|
from .models.clip import CLIPSTEncoder
|
||
|
from .models.facial_recognition import FaceRecognizer
|
||
|
from .models.image_classification import ImageClassifier
|
||
|
from .schemas import ModelType
|
||
|
|
||
|
|
||
|
class TestImageClassifier:
|
||
|
def test_init(self, mock_classifier_pipeline: mock.Mock) -> None:
|
||
|
cache_dir = Path("test_cache")
|
||
|
classifier = ImageClassifier("test_model_name", 0.5, cache_dir=cache_dir)
|
||
|
|
||
|
assert classifier.min_score == 0.5
|
||
|
mock_classifier_pipeline.assert_called_once_with(
|
||
|
"image-classification",
|
||
|
"test_model_name",
|
||
|
model_kwargs={"cache_dir": cache_dir},
|
||
|
)
|
||
|
|
||
|
def test_min_score(self, pil_image: Image.Image, mock_classifier_pipeline: mock.Mock) -> None:
|
||
|
classifier = ImageClassifier("test_model_name", min_score=0.0)
|
||
|
classifier.min_score = 0.0
|
||
|
all_labels = classifier.predict(pil_image)
|
||
|
classifier.min_score = 0.5
|
||
|
filtered_labels = classifier.predict(pil_image)
|
||
|
|
||
|
assert all_labels == [
|
||
|
"that's an image alright",
|
||
|
"well it ends with .jpg",
|
||
|
"idk",
|
||
|
"im just seeing bytes",
|
||
|
"not sure",
|
||
|
"probably a virus",
|
||
|
]
|
||
|
assert filtered_labels == ["that's an image alright"]
|
||
|
|
||
|
|
||
|
class TestCLIP:
|
||
|
def test_init(self, mock_st: mock.Mock) -> None:
|
||
|
CLIPSTEncoder("test_model_name", cache_dir="test_cache")
|
||
|
|
||
|
mock_st.assert_called_once_with("test_model_name", cache_folder="test_cache")
|
||
|
|
||
|
def test_basic_image(self, pil_image: Image.Image, mock_st: mock.Mock) -> None:
|
||
|
clip_encoder = CLIPSTEncoder("test_model_name", cache_dir="test_cache")
|
||
|
embedding = clip_encoder.predict(pil_image)
|
||
|
|
||
|
assert isinstance(embedding, list)
|
||
|
assert len(embedding) == 512
|
||
|
assert all([isinstance(num, float) for num in embedding])
|
||
|
mock_st.assert_called_once()
|
||
|
|
||
|
def test_basic_text(self, mock_st: mock.Mock) -> None:
|
||
|
clip_encoder = CLIPSTEncoder("test_model_name", cache_dir="test_cache")
|
||
|
embedding = clip_encoder.predict("test search query")
|
||
|
|
||
|
assert isinstance(embedding, list)
|
||
|
assert len(embedding) == 512
|
||
|
assert all([isinstance(num, float) for num in embedding])
|
||
|
mock_st.assert_called_once()
|
||
|
|
||
|
|
||
|
class TestFaceRecognition:
|
||
|
def test_init(self, mock_faceanalysis: mock.Mock) -> None:
|
||
|
FaceRecognizer("test_model_name", cache_dir="test_cache")
|
||
|
|
||
|
mock_faceanalysis.assert_called_once_with(
|
||
|
name="test_model_name",
|
||
|
root="test_cache",
|
||
|
allowed_modules=["detection", "recognition"],
|
||
|
)
|
||
|
|
||
|
def test_basic(self, cv_image: cv2.Mat, mock_faceanalysis: mock.Mock) -> None:
|
||
|
face_recognizer = FaceRecognizer("test_model_name", min_score=0.0, cache_dir="test_cache")
|
||
|
faces = face_recognizer.predict(cv_image)
|
||
|
|
||
|
assert len(faces) == 2
|
||
|
for face in faces:
|
||
|
assert face["imageHeight"] == 800
|
||
|
assert face["imageWidth"] == 600
|
||
|
assert isinstance(face["embedding"], list)
|
||
|
assert len(face["embedding"]) == 512
|
||
|
assert all([isinstance(num, float) for num in face["embedding"]])
|
||
|
|
||
|
mock_faceanalysis.assert_called_once()
|
||
|
|
||
|
|
||
|
@pytest.mark.asyncio
|
||
|
class TestCache:
|
||
|
async def test_caches(self, mock_get_model: mock.Mock) -> None:
|
||
|
model_cache = ModelCache()
|
||
|
await model_cache.get("test_model_name", ModelType.IMAGE_CLASSIFICATION)
|
||
|
await model_cache.get("test_model_name", ModelType.IMAGE_CLASSIFICATION)
|
||
|
assert len(model_cache.cache._cache) == 1
|
||
|
mock_get_model.assert_called_once()
|
||
|
|
||
|
async def test_kwargs_used(self, mock_get_model: mock.Mock) -> None:
|
||
|
model_cache = ModelCache()
|
||
|
await model_cache.get("test_model_name", ModelType.IMAGE_CLASSIFICATION, cache_dir="test_cache")
|
||
|
mock_get_model.assert_called_once_with(
|
||
|
ModelType.IMAGE_CLASSIFICATION, "test_model_name", cache_dir="test_cache"
|
||
|
)
|
||
|
|
||
|
async def test_different_clip(self, mock_get_model: mock.Mock) -> None:
|
||
|
model_cache = ModelCache()
|
||
|
await model_cache.get("test_image_model_name", ModelType.CLIP)
|
||
|
await model_cache.get("test_text_model_name", ModelType.CLIP)
|
||
|
mock_get_model.assert_has_calls(
|
||
|
[
|
||
|
mock.call(ModelType.CLIP, "test_image_model_name"),
|
||
|
mock.call(ModelType.CLIP, "test_text_model_name"),
|
||
|
]
|
||
|
)
|
||
|
assert len(model_cache.cache._cache) == 2
|
||
|
|
||
|
@mock.patch("app.models.cache.OptimisticLock", autospec=True)
|
||
|
async def test_model_ttl(self, mock_lock_cls: mock.Mock, mock_get_model: mock.Mock) -> None:
|
||
|
model_cache = ModelCache(ttl=100)
|
||
|
await model_cache.get("test_model_name", ModelType.IMAGE_CLASSIFICATION)
|
||
|
mock_lock_cls.return_value.__aenter__.return_value.cas.assert_called_with(mock.ANY, ttl=100)
|
||
|
|
||
|
@mock.patch("app.models.cache.SimpleMemoryCache.expire")
|
||
|
async def test_revalidate(self, mock_cache_expire: mock.Mock, mock_get_model: mock.Mock) -> None:
|
||
|
model_cache = ModelCache(ttl=100, revalidate=True)
|
||
|
await model_cache.get("test_model_name", ModelType.IMAGE_CLASSIFICATION)
|
||
|
await model_cache.get("test_model_name", ModelType.IMAGE_CLASSIFICATION)
|
||
|
mock_cache_expire.assert_called_once_with(mock.ANY, 100)
|
||
|
|
||
|
|
||
|
@pytest.mark.skipif(
|
||
|
not settings.test_full,
|
||
|
reason="More time-consuming since it deploys the app and loads models.",
|
||
|
)
|
||
|
class TestEndpoints:
|
||
|
def test_tagging_endpoint(self, pil_image: Image.Image, deployed_app: TestClient) -> None:
|
||
|
byte_image = BytesIO()
|
||
|
pil_image.save(byte_image, format="jpeg")
|
||
|
headers = {"Content-Type": "image/jpg"}
|
||
|
response = deployed_app.post(
|
||
|
"http://localhost:3003/image-classifier/tag-image",
|
||
|
content=byte_image.getvalue(),
|
||
|
headers=headers,
|
||
|
)
|
||
|
assert response.status_code == 200
|
||
|
|
||
|
def test_clip_image_endpoint(self, pil_image: Image.Image, deployed_app: TestClient) -> None:
|
||
|
byte_image = BytesIO()
|
||
|
pil_image.save(byte_image, format="jpeg")
|
||
|
headers = {"Content-Type": "image/jpg"}
|
||
|
response = deployed_app.post(
|
||
|
"http://localhost:3003/sentence-transformer/encode-image",
|
||
|
content=byte_image.getvalue(),
|
||
|
headers=headers,
|
||
|
)
|
||
|
assert response.status_code == 200
|
||
|
|
||
|
def test_clip_text_endpoint(self, deployed_app: TestClient) -> None:
|
||
|
response = deployed_app.post(
|
||
|
"http://localhost:3003/sentence-transformer/encode-text",
|
||
|
json={"text": "test search query"},
|
||
|
)
|
||
|
assert response.status_code == 200
|
||
|
|
||
|
def test_face_endpoint(self, pil_image: Image.Image, deployed_app: TestClient) -> None:
|
||
|
byte_image = BytesIO()
|
||
|
pil_image.save(byte_image, format="jpeg")
|
||
|
headers = {"Content-Type": "image/jpg"}
|
||
|
response = deployed_app.post(
|
||
|
"http://localhost:3003/facial-recognition/detect-faces",
|
||
|
content=byte_image.getvalue(),
|
||
|
headers=headers,
|
||
|
)
|
||
|
assert response.status_code == 200
|