1
0
Fork 0
mirror of https://github.com/immich-app/immich.git synced 2025-01-01 08:31:59 +00:00
immich/machine-learning/export/run.py

114 lines
4.2 KiB
Python
Raw Normal View History

import gc
import os
from pathlib import Path
from tempfile import TemporaryDirectory
import torch
from huggingface_hub import create_repo, upload_folder
from models import mclip, openclip
from models.optimize import optimize
from rich.progress import Progress
models = [
"M-CLIP/LABSE-Vit-L-14",
"M-CLIP/XLM-Roberta-Large-Vit-B-16Plus",
"M-CLIP/XLM-Roberta-Large-Vit-B-32",
"M-CLIP/XLM-Roberta-Large-Vit-L-14",
"RN101::openai",
"RN101::yfcc15m",
"RN50::cc12m",
"RN50::openai",
"RN50::yfcc15m",
"RN50x16::openai",
"RN50x4::openai",
"RN50x64::openai",
"ViT-B-16-SigLIP-256::webli",
"ViT-B-16-SigLIP-384::webli",
"ViT-B-16-SigLIP-512::webli",
"ViT-B-16-SigLIP-i18n-256::webli",
"ViT-B-16-SigLIP::webli",
"ViT-B-16-plus-240::laion400m_e31",
"ViT-B-16-plus-240::laion400m_e32",
"ViT-B-16::laion400m_e31",
"ViT-B-16::laion400m_e32",
"ViT-B-16::openai",
"ViT-B-32::laion2b-s34b-b79k",
"ViT-B-32::laion2b_e16",
"ViT-B-32::laion400m_e31",
"ViT-B-32::laion400m_e32",
"ViT-B-32::openai",
"ViT-H-14-378-quickgelu::dfn5b",
"ViT-H-14-quickgelu::dfn5b",
"ViT-H-14::laion2b-s32b-b79k",
"ViT-L-14-336::openai",
"ViT-L-14-quickgelu::dfn2b",
"ViT-L-14::laion2b-s32b-b82k",
"ViT-L-14::laion400m_e31",
"ViT-L-14::laion400m_e32",
"ViT-L-14::openai",
"ViT-L-16-SigLIP-256::webli",
"ViT-L-16-SigLIP-384::webli",
"ViT-SO400M-14-SigLIP-384::webli",
"ViT-g-14::laion2b-s12b-b42k",
"nllb-clip-base-siglip::mrl",
"nllb-clip-base-siglip::v1",
"nllb-clip-large-siglip::mrl",
"nllb-clip-large-siglip::v1",
"xlm-roberta-base-ViT-B-32::laion5b_s13b_b90k",
"xlm-roberta-large-ViT-H-14::frozen_laion5b_s13b_b90k",
]
# glob to delete old UUID blobs when reuploading models
uuid_char = "[a-fA-F0-9]"
uuid_glob = uuid_char * 8 + "-" + uuid_char * 4 + "-" + uuid_char * 4 + "-" + uuid_char * 4 + "-" + uuid_char * 12
# remote repo files to be deleted before uploading
# deletion is in the same commit as the upload, so it's atomic
delete_patterns = ["**/*onnx*", "**/Constant*", "**/*.weight", "**/*.bias", f"**/{uuid_glob}"]
with Progress() as progress:
task = progress.add_task("[green]Exporting models...", total=len(models))
token = os.environ.get("HF_AUTH_TOKEN")
torch.backends.mha.set_fastpath_enabled(False)
with TemporaryDirectory() as tmp:
tmpdir = Path(tmp)
for model in models:
model_name = model.split("/")[-1].replace("::", "__")
hf_model_name = model_name.replace("xlm-roberta-large", "XLM-Roberta-Large")
hf_model_name = model_name.replace("xlm-roberta-base", "XLM-Roberta-Base")
config_path = tmpdir / model_name / "config.json"
def export() -> None:
progress.update(task, description=f"[green]Exporting {hf_model_name}")
visual_dir = tmpdir / hf_model_name / "visual"
textual_dir = tmpdir / hf_model_name / "textual"
if model.startswith("M-CLIP"):
visual_path, textual_path = mclip.to_onnx(model, visual_dir, textual_dir)
else:
name, _, pretrained = model_name.partition("__")
config = openclip.OpenCLIPModelConfig(name, pretrained)
visual_path, textual_path = openclip.to_onnx(config, visual_dir, textual_dir)
progress.update(task, description=f"[green]Optimizing {hf_model_name} (visual)")
optimize(visual_path)
progress.update(task, description=f"[green]Optimizing {hf_model_name} (textual)")
optimize(textual_path)
gc.collect()
def upload() -> None:
progress.update(task, description=f"[yellow]Uploading {hf_model_name}")
repo_id = f"immich-app/{hf_model_name}"
create_repo(repo_id, exist_ok=True)
upload_folder(
repo_id=repo_id,
folder_path=tmpdir / hf_model_name,
delete_patterns=delete_patterns,
token=token,
)
export()
if token is not None:
upload()
progress.update(task, advance=1)