1
0
Fork 0
mirror of https://github.com/immich-app/immich.git synced 2025-01-22 11:42:46 +01:00
immich/machine-learning/app/models/base.py

286 lines
11 KiB
Python
Raw Normal View History

from __future__ import annotations
from abc import ABC, abstractmethod
from pathlib import Path
from shutil import rmtree
from typing import Any
import onnx
import onnxruntime as ort
from huggingface_hub import snapshot_download
from onnx.shape_inference import infer_shapes
from onnx.tools.update_model_dims import update_inputs_outputs_dims
import ann.ann
from app.models.constants import STATIC_INPUT_PROVIDERS, SUPPORTED_PROVIDERS
from ..config import get_cache_dir, get_hf_model_name, log, settings
from ..schemas import ModelRuntime, ModelType
from .ann import AnnSession
class InferenceModel(ABC):
_model_type: ModelType
def __init__(
self,
model_name: str,
cache_dir: Path | str | None = None,
providers: list[str] | None = None,
provider_options: list[dict[str, Any]] | None = None,
sess_options: ort.SessionOptions | None = None,
preferred_runtime: ModelRuntime | None = None,
**model_kwargs: Any,
) -> None:
self.loaded = False
self.model_name = model_name
self.cache_dir = Path(cache_dir) if cache_dir is not None else self.cache_dir_default
self.providers = providers if providers is not None else self.providers_default
self.provider_options = provider_options if provider_options is not None else self.provider_options_default
self.sess_options = sess_options if sess_options is not None else self.sess_options_default
self.preferred_runtime = preferred_runtime if preferred_runtime is not None else self.preferred_runtime_default
def download(self) -> None:
if not self.cached:
log.info(
f"Downloading {self.model_type.replace('-', ' ')} model '{self.model_name}'. This may take a while."
)
self._download()
def load(self) -> None:
if self.loaded:
return
self.download()
log.info(f"Loading {self.model_type.replace('-', ' ')} model '{self.model_name}' to memory")
self._load()
self.loaded = True
def predict(self, inputs: Any, **model_kwargs: Any) -> Any:
self.load()
if model_kwargs:
self.configure(**model_kwargs)
return self._predict(inputs)
@abstractmethod
def _predict(self, inputs: Any) -> Any: ...
def configure(self, **model_kwargs: Any) -> None:
pass
def _download(self) -> None:
ignore_patterns = [] if self.preferred_runtime == ModelRuntime.ARMNN else ["*.armnn"]
snapshot_download(
get_hf_model_name(self.model_name),
cache_dir=self.cache_dir,
local_dir=self.cache_dir,
local_dir_use_symlinks=False,
ignore_patterns=ignore_patterns,
)
@abstractmethod
def _load(self) -> None: ...
def clear_cache(self) -> None:
if not self.cache_dir.exists():
log.warning(
f"Attempted to clear cache for model '{self.model_name}', but cache directory does not exist",
)
return
if not rmtree.avoids_symlink_attacks:
raise RuntimeError("Attempted to clear cache, but rmtree is not safe on this platform")
if self.cache_dir.is_dir():
log.info(f"Cleared cache directory for model '{self.model_name}'.")
rmtree(self.cache_dir)
else:
log.warning(
(
f"Encountered file instead of directory at cache path "
f"for '{self.model_name}'. Removing file and replacing with a directory."
),
)
self.cache_dir.unlink()
self.cache_dir.mkdir(parents=True, exist_ok=True)
def _make_session(self, model_path: Path) -> AnnSession | ort.InferenceSession:
if not model_path.is_file():
onnx_path = model_path.with_suffix(".onnx")
if not onnx_path.is_file():
raise ValueError(f"Model path '{model_path}' does not exist")
log.warning(
f"Could not find model path '{model_path}'. " f"Falling back to ONNX model path '{onnx_path}' instead.",
)
model_path = onnx_path
if any(provider in STATIC_INPUT_PROVIDERS for provider in self.providers):
static_path = model_path.parent / "static_1" / "model.onnx"
static_path.parent.mkdir(parents=True, exist_ok=True)
if not static_path.is_file():
self._convert_to_static(model_path, static_path)
model_path = static_path
match model_path.suffix:
case ".armnn":
session = AnnSession(model_path)
case ".onnx":
session = ort.InferenceSession(
model_path.as_posix(),
sess_options=self.sess_options,
providers=self.providers,
provider_options=self.provider_options,
)
case _:
raise ValueError(f"Unsupported model file type: {model_path.suffix}")
return session
def _convert_to_static(self, source_path: Path, target_path: Path) -> None:
inferred = infer_shapes(onnx.load(source_path))
inputs = self._get_static_dims(inferred.graph.input)
outputs = self._get_static_dims(inferred.graph.output)
# check_model gets called in update_inputs_outputs_dims and doesn't work for large models
check_model = onnx.checker.check_model
try:
def check_model_stub(*args: Any, **kwargs: Any) -> None:
pass
onnx.checker.check_model = check_model_stub
updated_model = update_inputs_outputs_dims(inferred, inputs, outputs)
finally:
onnx.checker.check_model = check_model
onnx.save(
updated_model,
target_path,
save_as_external_data=True,
all_tensors_to_one_file=False,
size_threshold=1048576,
)
def _get_static_dims(self, graph_io: Any, dim_size: int = 1) -> dict[str, list[int]]:
return {
field.name: [
d.dim_value if d.HasField("dim_value") else dim_size
for shape in field.type.ListFields()
if (dim := shape[1].shape.dim)
for d in dim
]
for field in graph_io
}
@property
def model_type(self) -> ModelType:
return self._model_type
@property
def cache_dir(self) -> Path:
return self._cache_dir
@cache_dir.setter
def cache_dir(self, cache_dir: Path) -> None:
self._cache_dir = cache_dir
@property
def cache_dir_default(self) -> Path:
return get_cache_dir(self.model_name, self.model_type)
@property
def cached(self) -> bool:
return self.cache_dir.is_dir() and any(self.cache_dir.iterdir())
@property
def providers(self) -> list[str]:
return self._providers
@providers.setter
def providers(self, providers: list[str]) -> None:
log.info(
(f"Setting '{self.model_name}' execution providers to {providers}, " "in descending order of preference"),
)
self._providers = providers
@property
def providers_default(self) -> list[str]:
available_providers = set(ort.get_available_providers())
log.debug(f"Available ORT providers: {available_providers}")
return [provider for provider in SUPPORTED_PROVIDERS if provider in available_providers]
@property
def provider_options(self) -> list[dict[str, Any]]:
return self._provider_options
@provider_options.setter
def provider_options(self, provider_options: list[dict[str, Any]]) -> None:
log.debug(f"Setting execution provider options to {provider_options}")
self._provider_options = provider_options
@property
def provider_options_default(self) -> list[dict[str, Any]]:
options = []
for provider in self.providers:
match provider:
case "CPUExecutionProvider" | "CUDAExecutionProvider":
option = {"arena_extend_strategy": "kSameAsRequested"}
case "OpenVINOExecutionProvider":
try:
device_ids: list[str] = ort.capi._pybind_state.get_available_openvino_device_ids()
log.debug(f"Available OpenVINO devices: {device_ids}")
gpu_devices = [device_id for device_id in device_ids if device_id.startswith("GPU")]
option = {"device_id": gpu_devices[0]} if gpu_devices else {}
except AttributeError as e:
log.warning("Failed to get OpenVINO device IDs. Using default options.")
log.error(e)
option = {}
case _:
option = {}
options.append(option)
return options
@property
def sess_options(self) -> ort.SessionOptions:
return self._sess_options
@sess_options.setter
def sess_options(self, sess_options: ort.SessionOptions) -> None:
log.debug(f"Setting execution_mode to {sess_options.execution_mode.name}")
log.debug(f"Setting inter_op_num_threads to {sess_options.inter_op_num_threads}")
log.debug(f"Setting intra_op_num_threads to {sess_options.intra_op_num_threads}")
self._sess_options = sess_options
@property
def sess_options_default(self) -> ort.SessionOptions:
sess_options = ort.SessionOptions()
sess_options.enable_cpu_mem_arena = False
# avoid thread contention between models
if settings.model_inter_op_threads > 0:
sess_options.inter_op_num_threads = settings.model_inter_op_threads
# these defaults work well for CPU, but bottleneck GPU
elif settings.model_inter_op_threads == 0 and self.providers == ["CPUExecutionProvider"]:
sess_options.inter_op_num_threads = 1
if settings.model_intra_op_threads > 0:
sess_options.intra_op_num_threads = settings.model_intra_op_threads
elif settings.model_intra_op_threads == 0 and self.providers == ["CPUExecutionProvider"]:
sess_options.intra_op_num_threads = 2
if sess_options.inter_op_num_threads > 1:
sess_options.execution_mode = ort.ExecutionMode.ORT_PARALLEL
return sess_options
@property
def preferred_runtime(self) -> ModelRuntime:
return self._preferred_runtime
@preferred_runtime.setter
def preferred_runtime(self, preferred_runtime: ModelRuntime) -> None:
log.debug(f"Setting preferred runtime to {preferred_runtime}")
self._preferred_runtime = preferred_runtime
@property
def preferred_runtime_default(self) -> ModelRuntime:
return ModelRuntime.ARMNN if ann.ann.is_available and settings.ann else ModelRuntime.ONNX