1
0
Fork 0
mirror of https://github.com/immich-app/immich.git synced 2025-01-10 13:56:47 +01:00
immich/machine-learning/app/models/facial_recognition/recognition.py

81 lines
3.6 KiB
Python
Raw Normal View History

from pathlib import Path
from typing import Any
import numpy as np
import onnx
from insightface.model_zoo import ArcFaceONNX
from insightface.utils.face_align import norm_crop
from numpy.typing import NDArray
from onnx.tools.update_model_dims import update_inputs_outputs_dims
from PIL import Image
from app.config import log
from app.models.base import InferenceModel
from app.models.transforms import decode_cv2
2024-06-25 18:00:24 +02:00
from app.schemas import FaceDetectionOutput, FacialRecognitionOutput, ModelFormat, ModelSession, ModelTask, ModelType
from app.sessions import has_batch_axis
class FaceRecognizer(InferenceModel):
depends = [(ModelType.DETECTION, ModelTask.FACIAL_RECOGNITION)]
identity = (ModelType.RECOGNITION, ModelTask.FACIAL_RECOGNITION)
def __init__(self, model_name: str, min_score: float = 0.7, **model_kwargs: Any) -> None:
super().__init__(model_name, **model_kwargs)
2024-06-25 18:00:24 +02:00
self.min_score = model_kwargs.pop("minScore", min_score)
self.batch = self.model_format == ModelFormat.ONNX
def _load(self) -> ModelSession:
session = self._make_session(self.model_path)
if self.batch and not has_batch_axis(session):
2024-06-25 18:00:24 +02:00
self._add_batch_axis(self.model_path)
session = self._make_session(self.model_path)
self.model = ArcFaceONNX(
self.model_path.with_suffix(".onnx").as_posix(),
session=session,
)
return session
def _predict(
self, inputs: NDArray[np.uint8] | bytes | Image.Image, faces: FaceDetectionOutput, **kwargs: Any
) -> FacialRecognitionOutput:
if faces["boxes"].shape[0] == 0:
return []
inputs = decode_cv2(inputs)
2024-06-25 18:00:24 +02:00
cropped_faces = self._crop(inputs, faces)
embeddings = self._predict_batch(cropped_faces) if self.batch else self._predict_single(cropped_faces)
return self.postprocess(faces, embeddings)
2024-06-25 18:00:24 +02:00
def _predict_batch(self, cropped_faces: list[NDArray[np.uint8]]) -> NDArray[np.float32]:
embeddings: NDArray[np.float32] = self.model.get_feat(cropped_faces)
return embeddings
def _predict_single(self, cropped_faces: list[NDArray[np.uint8]]) -> NDArray[np.float32]:
embeddings: list[NDArray[np.float32]] = []
for face in cropped_faces:
embeddings.append(self.model.get_feat(face))
return np.concatenate(embeddings, axis=0)
def postprocess(self, faces: FaceDetectionOutput, embeddings: NDArray[np.float32]) -> FacialRecognitionOutput:
return [
{
"boundingBox": {"x1": x1, "y1": y1, "x2": x2, "y2": y2},
"embedding": embedding,
"score": score,
}
for (x1, y1, x2, y2), embedding, score in zip(faces["boxes"], embeddings, faces["scores"])
]
def _crop(self, image: NDArray[np.uint8], faces: FaceDetectionOutput) -> list[NDArray[np.uint8]]:
return [norm_crop(image, landmark) for landmark in faces["landmarks"]]
2024-06-25 18:00:24 +02:00
def _add_batch_axis(self, model_path: Path) -> None:
log.debug(f"Adding batch axis to model {model_path}")
proto = onnx.load(model_path)
static_input_dims = [shape.dim_value for shape in proto.graph.input[0].type.tensor_type.shape.dim[1:]]
static_output_dims = [shape.dim_value for shape in proto.graph.output[0].type.tensor_type.shape.dim[1:]]
input_dims = {proto.graph.input[0].name: ["batch"] + static_input_dims}
output_dims = {proto.graph.output[0].name: ["batch"] + static_output_dims}
updated_proto = update_inputs_outputs_dims(proto, input_dims, output_dims)
onnx.save(updated_proto, model_path)