1
0
Fork 0
mirror of https://github.com/immich-app/immich.git synced 2025-01-10 05:46:46 +01:00
immich/machine-learning/app/models/clip/textual.py

109 lines
4 KiB
Python
Raw Normal View History

import json
from abc import abstractmethod
from functools import cached_property
from pathlib import Path
from typing import Any
import numpy as np
from numpy.typing import NDArray
from tokenizers import Encoding, Tokenizer
from app.config import log
from app.models.base import InferenceModel
from app.models.transforms import clean_text
from app.schemas import ModelSession, ModelTask, ModelType
class BaseCLIPTextualEncoder(InferenceModel):
depends = []
identity = (ModelType.TEXTUAL, ModelTask.SEARCH)
def _predict(self, inputs: str, **kwargs: Any) -> NDArray[np.float32]:
res: NDArray[np.float32] = self.session.run(None, self.tokenize(inputs))[0][0]
return res
def _load(self) -> ModelSession:
session = super()._load()
log.debug(f"Loading tokenizer for CLIP model '{self.model_name}'")
self.tokenizer = self._load_tokenizer()
tokenizer_kwargs: dict[str, Any] | None = self.text_cfg.get("tokenizer_kwargs")
self.canonicalize = tokenizer_kwargs is not None and tokenizer_kwargs.get("clean") == "canonicalize"
log.debug(f"Loaded tokenizer for CLIP model '{self.model_name}'")
return session
@abstractmethod
def _load_tokenizer(self) -> Tokenizer:
pass
@abstractmethod
def tokenize(self, text: str) -> dict[str, NDArray[np.int32]]:
pass
@property
def model_cfg_path(self) -> Path:
return self.cache_dir / "config.json"
@property
def tokenizer_file_path(self) -> Path:
return self.model_dir / "tokenizer.json"
@property
def tokenizer_cfg_path(self) -> Path:
return self.model_dir / "tokenizer_config.json"
@cached_property
def model_cfg(self) -> dict[str, Any]:
log.debug(f"Loading model config for CLIP model '{self.model_name}'")
model_cfg: dict[str, Any] = json.load(self.model_cfg_path.open())
log.debug(f"Loaded model config for CLIP model '{self.model_name}'")
return model_cfg
@property
def text_cfg(self) -> dict[str, Any]:
text_cfg: dict[str, Any] = self.model_cfg["text_cfg"]
return text_cfg
@cached_property
def tokenizer_file(self) -> dict[str, Any]:
log.debug(f"Loading tokenizer file for CLIP model '{self.model_name}'")
tokenizer_file: dict[str, Any] = json.load(self.tokenizer_file_path.open())
log.debug(f"Loaded tokenizer file for CLIP model '{self.model_name}'")
return tokenizer_file
@cached_property
def tokenizer_cfg(self) -> dict[str, Any]:
log.debug(f"Loading tokenizer config for CLIP model '{self.model_name}'")
tokenizer_cfg: dict[str, Any] = json.load(self.tokenizer_cfg_path.open())
log.debug(f"Loaded tokenizer config for CLIP model '{self.model_name}'")
return tokenizer_cfg
class OpenClipTextualEncoder(BaseCLIPTextualEncoder):
def _load_tokenizer(self) -> Tokenizer:
context_length: int = self.text_cfg.get("context_length", 77)
pad_token: str = self.tokenizer_cfg["pad_token"]
tokenizer: Tokenizer = Tokenizer.from_file(self.tokenizer_file_path.as_posix())
pad_id: int = tokenizer.token_to_id(pad_token)
tokenizer.enable_padding(length=context_length, pad_token=pad_token, pad_id=pad_id)
tokenizer.enable_truncation(max_length=context_length)
return tokenizer
def tokenize(self, text: str) -> dict[str, NDArray[np.int32]]:
text = clean_text(text, canonicalize=self.canonicalize)
tokens: Encoding = self.tokenizer.encode(text)
return {"text": np.array([tokens.ids], dtype=np.int32)}
class MClipTextualEncoder(OpenClipTextualEncoder):
def tokenize(self, text: str) -> dict[str, NDArray[np.int32]]:
text = clean_text(text, canonicalize=self.canonicalize)
tokens: Encoding = self.tokenizer.encode(text)
return {
"input_ids": np.array([tokens.ids], dtype=np.int32),
"attention_mask": np.array([tokens.attention_mask], dtype=np.int32),
}