1
0
Fork 0
mirror of https://github.com/immich-app/immich.git synced 2025-01-07 20:36:48 +01:00
immich/machine-learning/app/models/base.py

160 lines
5.6 KiB
Python
Raw Normal View History

from __future__ import annotations
import pickle
from abc import ABC, abstractmethod
from pathlib import Path
from shutil import rmtree
from typing import Any
from zipfile import BadZipFile
import onnxruntime as ort
from onnxruntime.capi.onnxruntime_pybind11_state import InvalidProtobuf # type: ignore
from ..config import get_cache_dir, log, settings
from ..schemas import ModelType
class InferenceModel(ABC):
_model_type: ModelType
def __init__(
self,
model_name: str,
cache_dir: Path | str | None = None,
eager: bool = True,
inter_op_num_threads: int = settings.model_inter_op_threads,
intra_op_num_threads: int = settings.model_intra_op_threads,
**model_kwargs: Any,
) -> None:
self.model_name = model_name
self._loaded = False
self._cache_dir = Path(cache_dir) if cache_dir is not None else get_cache_dir(model_name, self.model_type)
loader = self.load if eager else self.download
self.providers = model_kwargs.pop("providers", ["CPUExecutionProvider"])
# don't pre-allocate more memory than needed
self.provider_options = model_kwargs.pop(
"provider_options", [{"arena_extend_strategy": "kSameAsRequested"}] * len(self.providers)
)
log.debug(
(
f"Setting '{self.model_name}' execution providers to {self.providers}"
"in descending order of preference"
),
)
log.debug(f"Setting execution provider options to {self.provider_options}")
self.sess_options = PicklableSessionOptions()
# avoid thread contention between models
if inter_op_num_threads > 1:
self.sess_options.execution_mode = ort.ExecutionMode.ORT_PARALLEL
log.debug(f"Setting execution_mode to {self.sess_options.execution_mode.name}")
log.debug(f"Setting inter_op_num_threads to {inter_op_num_threads}")
log.debug(f"Setting intra_op_num_threads to {intra_op_num_threads}")
self.sess_options.inter_op_num_threads = inter_op_num_threads
self.sess_options.intra_op_num_threads = intra_op_num_threads
try:
loader(**model_kwargs)
except (OSError, InvalidProtobuf, BadZipFile):
log.warn(
(
f"Failed to load {self.model_type.replace('_', ' ')} model '{self.model_name}'."
"Clearing cache and retrying."
)
)
self.clear_cache()
loader(**model_kwargs)
def download(self, **model_kwargs: Any) -> None:
if not self.cached:
log.info(
(f"Downloading {self.model_type.replace('_', ' ')} model '{self.model_name}'." "This may take a while.")
)
self._download(**model_kwargs)
def load(self, **model_kwargs: Any) -> None:
self.download(**model_kwargs)
self._load(**model_kwargs)
self._loaded = True
def predict(self, inputs: Any, **model_kwargs: Any) -> Any:
if not self._loaded:
log.info(f"Loading {self.model_type.replace('_', ' ')} model '{self.model_name}'")
self.load()
if model_kwargs:
self.configure(**model_kwargs)
return self._predict(inputs)
@abstractmethod
def _predict(self, inputs: Any) -> Any:
...
def configure(self, **model_kwargs: Any) -> None:
pass
@abstractmethod
def _download(self, **model_kwargs: Any) -> None:
...
@abstractmethod
def _load(self, **model_kwargs: Any) -> None:
...
@property
def model_type(self) -> ModelType:
return self._model_type
@property
def cache_dir(self) -> Path:
return self._cache_dir
@cache_dir.setter
def cache_dir(self, cache_dir: Path) -> None:
self._cache_dir = cache_dir
@property
def cached(self) -> bool:
return self.cache_dir.exists() and any(self.cache_dir.iterdir())
@classmethod
def from_model_type(cls, model_type: ModelType, model_name: str, **model_kwargs: Any) -> InferenceModel:
subclasses = {subclass._model_type: subclass for subclass in cls.__subclasses__()}
if model_type not in subclasses:
raise ValueError(f"Unsupported model type: {model_type}")
return subclasses[model_type](model_name, **model_kwargs)
def clear_cache(self) -> None:
if not self.cache_dir.exists():
log.warn(
f"Attempted to clear cache for model '{self.model_name}' but cache directory does not exist.",
)
return
if not rmtree.avoids_symlink_attacks:
raise RuntimeError("Attempted to clear cache, but rmtree is not safe on this platform.")
if self.cache_dir.is_dir():
log.info(f"Cleared cache directory for model '{self.model_name}'.")
rmtree(self.cache_dir)
else:
log.warn(
(
f"Encountered file instead of directory at cache path "
f"for '{self.model_name}'. Removing file and replacing with a directory."
),
)
self.cache_dir.unlink()
self.cache_dir.mkdir(parents=True, exist_ok=True)
# HF deep copies configs, so we need to make session options picklable
class PicklableSessionOptions(ort.SessionOptions):
def __getstate__(self) -> bytes:
return pickle.dumps([(attr, getattr(self, attr)) for attr in dir(self) if not callable(getattr(self, attr))])
def __setstate__(self, state: Any) -> None:
self.__init__() # type: ignore
for attr, val in pickle.loads(state):
setattr(self, attr, val)