1
0
Fork 0
mirror of https://github.com/immich-app/immich.git synced 2025-01-07 20:36:48 +01:00
immich/machine-learning/ann/ann.py

163 lines
6.5 KiB
Python
Raw Normal View History

from __future__ import annotations
from ctypes import CDLL, Array, c_bool, c_char_p, c_int, c_ulong, c_void_p
from os.path import exists
from typing import Any, Protocol, TypeVar
import numpy as np
from numpy.typing import NDArray
from app.config import log
try:
CDLL("libmali.so") # fail if libmali.so is not mounted into container
libann = CDLL("libann.so")
libann.init.argtypes = c_int, c_int, c_char_p
libann.init.restype = c_void_p
libann.load.argtypes = c_void_p, c_char_p, c_bool, c_bool, c_bool, c_char_p
libann.load.restype = c_int
libann.execute.argtypes = c_void_p, c_int, Array[c_void_p], Array[c_void_p]
libann.unload.argtypes = c_void_p, c_int
libann.destroy.argtypes = (c_void_p,)
libann.shape.argtypes = c_void_p, c_int, c_bool, c_int
libann.shape.restype = c_ulong
libann.tensors.argtypes = c_void_p, c_int, c_bool
libann.tensors.restype = c_int
is_available = True
except OSError as e:
log.debug("Could not load ANN shared libraries, using ONNX: %s", e)
is_available = False
T = TypeVar("T", covariant=True)
class Newable(Protocol[T]):
def new(self) -> None:
...
class _Singleton(type, Newable[T]):
_instances: dict[_Singleton[T], Newable[T]] = {}
def __call__(cls, *args: Any, **kwargs: Any) -> Newable[T]:
if cls not in cls._instances:
obj: Newable[T] = super(_Singleton, cls).__call__(*args, **kwargs)
cls._instances[cls] = obj
else:
obj = cls._instances[cls]
obj.new()
return obj
class Ann(metaclass=_Singleton):
def __init__(self, log_level: int = 3, tuning_level: int = 1, tuning_file: str | None = None) -> None:
if not is_available:
raise RuntimeError("libann is not available!")
if tuning_file and not exists(tuning_file):
raise ValueError("tuning_file must point to an existing (possibly empty) file!")
if tuning_level == 0 and tuning_file is None:
raise ValueError("tuning_level == 0 reads existing tuning information and requires a tuning_file")
if tuning_level < 0 or tuning_level > 3:
raise ValueError("tuning_level must be 0 (load from tuning_file), 1, 2 or 3.")
if log_level < 0 or log_level > 5:
raise ValueError("log_level must be 0 (trace), 1 (debug), 2 (info), 3 (warning), 4 (error) or 5 (fatal)")
self.log_level = log_level
self.tuning_level = tuning_level
self.tuning_file = tuning_file
self.output_shapes: dict[int, tuple[tuple[int], ...]] = {}
self.input_shapes: dict[int, tuple[tuple[int], ...]] = {}
self.ann: int | None = None
self.new()
def new(self) -> None:
if self.ann is None:
self.ann = libann.init(
self.log_level,
self.tuning_level,
self.tuning_file.encode() if self.tuning_file is not None else None,
)
self.ref_count = 0
self.ref_count += 1
def destroy(self) -> None:
self.ref_count -= 1
if self.ref_count <= 0 and self.ann is not None:
libann.destroy(self.ann)
self.ann = None
def __del__(self) -> None:
if self.ann is not None:
libann.destroy(self.ann)
self.ann = None
def load(
self,
model_path: str,
fast_math: bool = True,
fp16: bool = False,
save_cached_network: bool = False,
cached_network_path: str | None = None,
) -> int:
if not model_path.endswith((".armnn", ".tflite", ".onnx")):
raise ValueError("model_path must be a file with extension .armnn, .tflite or .onnx")
if not exists(model_path):
raise ValueError("model_path must point to an existing file!")
if cached_network_path is not None and not exists(cached_network_path):
raise ValueError("cached_network_path must point to an existing (possibly empty) file!")
if save_cached_network and cached_network_path is None:
raise ValueError("save_cached_network is True, cached_network_path must be specified!")
net_id: int = libann.load(
self.ann,
model_path.encode(),
fast_math,
fp16,
save_cached_network,
cached_network_path.encode() if cached_network_path is not None else None,
)
self.input_shapes[net_id] = tuple(
self.shape(net_id, input=True, index=i) for i in range(self.tensors(net_id, input=True))
)
self.output_shapes[net_id] = tuple(
self.shape(net_id, input=False, index=i) for i in range(self.tensors(net_id, input=False))
)
return net_id
def unload(self, network_id: int) -> None:
libann.unload(self.ann, network_id)
del self.output_shapes[network_id]
def execute(self, network_id: int, input_tensors: list[NDArray[np.float32]]) -> list[NDArray[np.float32]]:
if not isinstance(input_tensors, list):
raise ValueError("input_tensors needs to be a list!")
net_input_shapes = self.input_shapes[network_id]
if len(input_tensors) != len(net_input_shapes):
raise ValueError(f"input_tensors lengths {len(input_tensors)} != network inputs {len(net_input_shapes)}")
for net_input_shape, input_tensor in zip(net_input_shapes, input_tensors):
if net_input_shape != input_tensor.shape:
raise ValueError(f"input_tensor shape {input_tensor.shape} != network input shape {net_input_shape}")
if not input_tensor.flags.c_contiguous:
raise ValueError("input_tensors must be c_contiguous numpy ndarrays")
output_tensors: list[NDArray[np.float32]] = [
np.ndarray(s, dtype=np.float32) for s in self.output_shapes[network_id]
]
input_type = c_void_p * len(input_tensors)
inputs = input_type(*[t.ctypes.data_as(c_void_p) for t in input_tensors])
output_type = c_void_p * len(output_tensors)
outputs = output_type(*[t.ctypes.data_as(c_void_p) for t in output_tensors])
libann.execute(self.ann, network_id, inputs, outputs)
return output_tensors
def shape(self, network_id: int, input: bool = False, index: int = 0) -> tuple[int]:
s = libann.shape(self.ann, network_id, input, index)
a = []
while s != 0:
a.append(s & 0xFFFF)
s >>= 16
return tuple(a)
def tensors(self, network_id: int, input: bool = False) -> int:
tensors: int = libann.tensors(self.ann, network_id, input)
return tensors