mirror of
https://github.com/immich-app/immich.git
synced 2025-01-04 02:46:47 +01:00
281 lines
9.6 KiB
C++
281 lines
9.6 KiB
C++
|
#include <fstream>
|
||
|
#include <mutex>
|
||
|
#include <atomic>
|
||
|
|
||
|
#include "armnn/IRuntime.hpp"
|
||
|
#include "armnn/INetwork.hpp"
|
||
|
#include "armnn/Types.hpp"
|
||
|
#include "armnnDeserializer/IDeserializer.hpp"
|
||
|
#include "armnnTfLiteParser/ITfLiteParser.hpp"
|
||
|
#include "armnnOnnxParser/IOnnxParser.hpp"
|
||
|
|
||
|
using namespace armnn;
|
||
|
|
||
|
struct IOInfos
|
||
|
{
|
||
|
std::vector<BindingPointInfo> inputInfos;
|
||
|
std::vector<BindingPointInfo> outputInfos;
|
||
|
};
|
||
|
|
||
|
// from https://rigtorp.se/spinlock/
|
||
|
struct SpinLock
|
||
|
{
|
||
|
std::atomic<bool> lock_ = {false};
|
||
|
|
||
|
void lock()
|
||
|
{
|
||
|
for (;;)
|
||
|
{
|
||
|
if (!lock_.exchange(true, std::memory_order_acquire))
|
||
|
{
|
||
|
break;
|
||
|
}
|
||
|
while (lock_.load(std::memory_order_relaxed))
|
||
|
;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void unlock() { lock_.store(false, std::memory_order_release); }
|
||
|
};
|
||
|
|
||
|
class Ann
|
||
|
{
|
||
|
|
||
|
public:
|
||
|
int load(const char *modelPath,
|
||
|
bool fastMath,
|
||
|
bool fp16,
|
||
|
bool saveCachedNetwork,
|
||
|
const char *cachedNetworkPath)
|
||
|
{
|
||
|
INetworkPtr network = loadModel(modelPath);
|
||
|
IOptimizedNetworkPtr optNet = OptimizeNetwork(network.get(), fastMath, fp16, saveCachedNetwork, cachedNetworkPath);
|
||
|
const IOInfos infos = getIOInfos(optNet.get());
|
||
|
NetworkId netId;
|
||
|
mutex.lock();
|
||
|
Status status = runtime->LoadNetwork(netId, std::move(optNet));
|
||
|
mutex.unlock();
|
||
|
if (status != Status::Success)
|
||
|
{
|
||
|
return -1;
|
||
|
}
|
||
|
spinLock.lock();
|
||
|
ioInfos[netId] = infos;
|
||
|
mutexes.emplace(netId, std::make_unique<std::mutex>());
|
||
|
spinLock.unlock();
|
||
|
return netId;
|
||
|
}
|
||
|
|
||
|
void execute(NetworkId netId, const void **inputData, void **outputData)
|
||
|
{
|
||
|
spinLock.lock();
|
||
|
const IOInfos *infos = &ioInfos[netId];
|
||
|
auto m = mutexes[netId].get();
|
||
|
spinLock.unlock();
|
||
|
InputTensors inputTensors;
|
||
|
inputTensors.reserve(infos->inputInfos.size());
|
||
|
size_t i = 0;
|
||
|
for (const BindingPointInfo &info : infos->inputInfos)
|
||
|
inputTensors.emplace_back(info.first, ConstTensor(info.second, inputData[i++]));
|
||
|
OutputTensors outputTensors;
|
||
|
outputTensors.reserve(infos->outputInfos.size());
|
||
|
i = 0;
|
||
|
for (const BindingPointInfo &info : infos->outputInfos)
|
||
|
outputTensors.emplace_back(info.first, Tensor(info.second, outputData[i++]));
|
||
|
m->lock();
|
||
|
runtime->EnqueueWorkload(netId, inputTensors, outputTensors);
|
||
|
m->unlock();
|
||
|
}
|
||
|
|
||
|
void unload(NetworkId netId)
|
||
|
{
|
||
|
mutex.lock();
|
||
|
runtime->UnloadNetwork(netId);
|
||
|
mutex.unlock();
|
||
|
}
|
||
|
|
||
|
int tensors(NetworkId netId, bool isInput = false)
|
||
|
{
|
||
|
spinLock.lock();
|
||
|
const IOInfos *infos = &ioInfos[netId];
|
||
|
spinLock.unlock();
|
||
|
return (int)(isInput ? infos->inputInfos.size() : infos->outputInfos.size());
|
||
|
}
|
||
|
|
||
|
unsigned long shape(NetworkId netId, bool isInput = false, int index = 0)
|
||
|
{
|
||
|
spinLock.lock();
|
||
|
const IOInfos *infos = &ioInfos[netId];
|
||
|
spinLock.unlock();
|
||
|
const TensorShape shape = (isInput ? infos->inputInfos : infos->outputInfos)[index].second.GetShape();
|
||
|
unsigned long s = 0;
|
||
|
for (unsigned int d = 0; d < shape.GetNumDimensions(); d++)
|
||
|
s |= ((unsigned long)shape[d]) << (d * 16); // stores up to 4 16-bit values in a 64-bit value
|
||
|
return s;
|
||
|
}
|
||
|
|
||
|
Ann(int tuningLevel, const char *tuningFile)
|
||
|
{
|
||
|
IRuntime::CreationOptions runtimeOptions;
|
||
|
BackendOptions backendOptions{"GpuAcc",
|
||
|
{
|
||
|
{"TuningLevel", tuningLevel},
|
||
|
{"MemoryOptimizerStrategy", "ConstantMemoryStrategy"}, // SingleAxisPriorityList or ConstantMemoryStrategy
|
||
|
}};
|
||
|
if (tuningFile)
|
||
|
backendOptions.AddOption({"TuningFile", tuningFile});
|
||
|
runtimeOptions.m_BackendOptions.emplace_back(backendOptions);
|
||
|
runtime = IRuntime::CreateRaw(runtimeOptions);
|
||
|
};
|
||
|
~Ann()
|
||
|
{
|
||
|
IRuntime::Destroy(runtime);
|
||
|
};
|
||
|
|
||
|
private:
|
||
|
INetworkPtr loadModel(const char *modelPath)
|
||
|
{
|
||
|
const auto path = std::string(modelPath);
|
||
|
if (path.rfind(".tflite") == path.length() - 7) // endsWith()
|
||
|
{
|
||
|
auto parser = armnnTfLiteParser::ITfLiteParser::CreateRaw();
|
||
|
return parser->CreateNetworkFromBinaryFile(modelPath);
|
||
|
}
|
||
|
else if (path.rfind(".onnx") == path.length() - 5) // endsWith()
|
||
|
{
|
||
|
auto parser = armnnOnnxParser::IOnnxParser::CreateRaw();
|
||
|
return parser->CreateNetworkFromBinaryFile(modelPath);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
std::ifstream ifs(path, std::ifstream::in | std::ifstream::binary);
|
||
|
auto parser = armnnDeserializer::IDeserializer::CreateRaw();
|
||
|
return parser->CreateNetworkFromBinary(ifs);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static BindingPointInfo getInputTensorInfo(LayerBindingId inputBindingId, TensorInfo info)
|
||
|
{
|
||
|
const auto newInfo = TensorInfo{info.GetShape(), info.GetDataType(),
|
||
|
info.GetQuantizationScale(),
|
||
|
info.GetQuantizationOffset(),
|
||
|
true};
|
||
|
return {inputBindingId, newInfo};
|
||
|
}
|
||
|
|
||
|
IOptimizedNetworkPtr OptimizeNetwork(INetwork *network, bool fastMath, bool fp16, bool saveCachedNetwork, const char *cachedNetworkPath)
|
||
|
{
|
||
|
const bool allowExpandedDims = false;
|
||
|
const ShapeInferenceMethod shapeInferenceMethod = ShapeInferenceMethod::ValidateOnly;
|
||
|
|
||
|
OptimizerOptionsOpaque options;
|
||
|
options.SetReduceFp32ToFp16(fp16);
|
||
|
options.SetShapeInferenceMethod(shapeInferenceMethod);
|
||
|
options.SetAllowExpandedDims(allowExpandedDims);
|
||
|
|
||
|
BackendOptions gpuAcc("GpuAcc", {{"FastMathEnabled", fastMath}});
|
||
|
if (cachedNetworkPath)
|
||
|
{
|
||
|
gpuAcc.AddOption({"SaveCachedNetwork", saveCachedNetwork});
|
||
|
gpuAcc.AddOption({"CachedNetworkFilePath", cachedNetworkPath});
|
||
|
}
|
||
|
options.AddModelOption(gpuAcc);
|
||
|
|
||
|
// No point in using ARMNN for CPU, use ONNX (quantized) instead.
|
||
|
// BackendOptions cpuAcc("CpuAcc",
|
||
|
// {
|
||
|
// {"FastMathEnabled", fastMath},
|
||
|
// {"NumberOfThreads", 0},
|
||
|
// });
|
||
|
// options.AddModelOption(cpuAcc);
|
||
|
|
||
|
BackendOptions allowExDimOpt("AllowExpandedDims",
|
||
|
{{"AllowExpandedDims", allowExpandedDims}});
|
||
|
options.AddModelOption(allowExDimOpt);
|
||
|
BackendOptions shapeInferOpt("ShapeInferenceMethod",
|
||
|
{{"InferAndValidate", shapeInferenceMethod == ShapeInferenceMethod::InferAndValidate}});
|
||
|
options.AddModelOption(shapeInferOpt);
|
||
|
|
||
|
std::vector<BackendId> backends = {
|
||
|
BackendId("GpuAcc"),
|
||
|
// BackendId("CpuAcc"),
|
||
|
// BackendId("CpuRef"),
|
||
|
};
|
||
|
return Optimize(*network, backends, runtime->GetDeviceSpec(), options);
|
||
|
}
|
||
|
|
||
|
IOInfos getIOInfos(IOptimizedNetwork *optNet)
|
||
|
{
|
||
|
struct InfoStrategy : IStrategy
|
||
|
{
|
||
|
void ExecuteStrategy(const IConnectableLayer *layer,
|
||
|
const BaseDescriptor &descriptor,
|
||
|
const std::vector<ConstTensor> &constants,
|
||
|
const char *name,
|
||
|
const LayerBindingId id = 0) override
|
||
|
{
|
||
|
IgnoreUnused(descriptor, constants, id);
|
||
|
const LayerType lt = layer->GetType();
|
||
|
if (lt == LayerType::Input)
|
||
|
ioInfos.inputInfos.push_back(getInputTensorInfo(id, layer->GetOutputSlot(0).GetTensorInfo()));
|
||
|
else if (lt == LayerType::Output)
|
||
|
ioInfos.outputInfos.push_back({id, layer->GetInputSlot(0).GetTensorInfo()});
|
||
|
}
|
||
|
IOInfos ioInfos;
|
||
|
};
|
||
|
|
||
|
InfoStrategy infoStrategy;
|
||
|
optNet->ExecuteStrategy(infoStrategy);
|
||
|
return infoStrategy.ioInfos;
|
||
|
}
|
||
|
|
||
|
IRuntime *runtime;
|
||
|
std::map<NetworkId, IOInfos> ioInfos;
|
||
|
std::map<NetworkId, std::unique_ptr<std::mutex>> mutexes; // mutex per network to not execute the same the same network concurrently
|
||
|
std::mutex mutex; // global mutex for load/unload calls to the runtime
|
||
|
SpinLock spinLock; // fast spin lock to guard access to the ioInfos and mutexes maps
|
||
|
};
|
||
|
|
||
|
extern "C" void *init(int logLevel, int tuningLevel, const char *tuningFile)
|
||
|
{
|
||
|
LogSeverity level = static_cast<LogSeverity>(logLevel);
|
||
|
ConfigureLogging(true, true, level);
|
||
|
|
||
|
Ann *ann = new Ann(tuningLevel, tuningFile);
|
||
|
return ann;
|
||
|
}
|
||
|
|
||
|
extern "C" void destroy(void *ann)
|
||
|
{
|
||
|
delete ((Ann *)ann);
|
||
|
}
|
||
|
|
||
|
extern "C" int load(void *ann,
|
||
|
const char *path,
|
||
|
bool fastMath,
|
||
|
bool fp16,
|
||
|
bool saveCachedNetwork,
|
||
|
const char *cachedNetworkPath)
|
||
|
{
|
||
|
return ((Ann *)ann)->load(path, fastMath, fp16, saveCachedNetwork, cachedNetworkPath);
|
||
|
}
|
||
|
|
||
|
extern "C" void unload(void *ann, NetworkId netId)
|
||
|
{
|
||
|
((Ann *)ann)->unload(netId);
|
||
|
}
|
||
|
|
||
|
extern "C" void execute(void *ann, NetworkId netId, const void **inputData, void **outputData)
|
||
|
{
|
||
|
((Ann *)ann)->execute(netId, inputData, outputData);
|
||
|
}
|
||
|
|
||
|
extern "C" unsigned long shape(void *ann, NetworkId netId, bool isInput, int index)
|
||
|
{
|
||
|
return ((Ann *)ann)->shape(netId, isInput, index);
|
||
|
}
|
||
|
|
||
|
extern "C" int tensors(void *ann, NetworkId netId, bool isInput)
|
||
|
{
|
||
|
return ((Ann *)ann)->tensors(netId, isInput);
|
||
|
}
|