1
0
Fork 0
mirror of https://github.com/immich-app/immich.git synced 2025-01-22 11:42:46 +01:00
immich/machine-learning/app/models/image_classification.py

64 lines
2.2 KiB
Python
Raw Normal View History

from pathlib import Path
from typing import Any
from huggingface_hub import snapshot_download
from optimum.onnxruntime import ORTModelForImageClassification
from optimum.pipelines import pipeline
from PIL.Image import Image
from transformers import AutoImageProcessor
from ..config import settings
from ..schemas import ModelType
from .base import InferenceModel
class ImageClassifier(InferenceModel):
_model_type = ModelType.IMAGE_CLASSIFICATION
def __init__(
self,
model_name: str,
min_score: float = settings.min_tag_score,
cache_dir: Path | str | None = None,
**model_kwargs: Any,
) -> None:
self.min_score = min_score
super().__init__(model_name, cache_dir, **model_kwargs)
def _download(self, **model_kwargs: Any) -> None:
snapshot_download(
cache_dir=self.cache_dir,
repo_id=self.model_name,
allow_patterns=["*.bin", "*.json", "*.txt"],
local_dir=self.cache_dir,
local_dir_use_symlinks=True,
)
def _load(self, **model_kwargs: Any) -> None:
processor = AutoImageProcessor.from_pretrained(self.cache_dir)
model_kwargs |= {
"cache_dir": self.cache_dir,
"provider": self.providers[0],
"provider_options": self.provider_options[0],
"session_options": self.sess_options,
}
model_path = self.cache_dir / "model.onnx"
if model_path.exists():
model = ORTModelForImageClassification.from_pretrained(self.cache_dir, **model_kwargs)
self.model = pipeline(self.model_type.value, model, feature_extractor=processor)
else:
self.sess_options.optimized_model_filepath = model_path.as_posix()
self.model = pipeline(
self.model_type.value,
self.model_name,
model_kwargs=model_kwargs,
feature_extractor=processor,
)
def _predict(self, image: Image) -> list[str]:
predictions: list[dict[str, Any]] = self.model(image) # type: ignore
tags = [tag for pred in predictions for tag in pred["label"].split(", ") if pred["score"] >= self.min_score]
return tags